MASTER WASTEWATER REPORT FOR DEVELOPMENT UNITS 8 & 9 AT EASTMARK

January 15, 2014 WP# 123835.04

REVIEWED BY Lury Sailly DATE

Submitted to:

City of Mesa

55 North Center Street

P.O. Box 1466

Mesa, Arizona 85211-1466 Phone: (480) 644-3258

Prepared for:

TerraWest Communities, LLC

2222 West Pinnacle Peak Road

Suite 160

Phoenix, Arizona 85027 Phone: (602) 374-2777

Prepared By:

Wood, Patel & Associates, Inc.

2220 South Country Club Drive

Suite 101

Mesa, Arizona 85210 Phone: (480) 834-3300 Fax: (602) 335-8580

TABLE OF CONTENTS

1.0	INTR	ODUCTION1
	1.1	General Background and Project Location
	1.2	Scope of the Master Wastewater Report1
	1.3	Master Wastewater Plan for Eastmark
	1.4	Study Area and Development Units2
	1.5	Basis of Design Reports for Specific Individual Developments2
2.0	EXIST	TING CONDITIONS3
	2.1	Topographic Conditions3
	2.2	Existing Offsite Wastewater Infrastructure
	2.3	Onsite Wastewater Collection Systems3
3.0	WAST	EWATER SYSTEM DESIGN4
	3.1	Design Criteria4
	3.2	Wastewater Design Flows4
4.0	PROP	OSED SYSTEM6
	4.1	Planned Wastewater Infrastructure6
		4.1.1 Ray Sewer Drainage Basin
	4.2	Pipe Sizing6
	4.3	Sewer Line Infrastructure Phasing
5.0	CONC	LUSIONS8
		<u>TABLES</u>
	Table I	Wastewater Design Criteria
	Table 2	/t a
	Table 3	
	Table 4	
	Table 5 Table 6	
	Table 7	
	Table 8	Calculated Pipe Capacities, Phase 1
		PLATES (20952 DARRELL D.)
	Plate 1	Vicinity Map
	Plate 2	Master Sewer Exhibit, Full Build-Out Condition
	Plate 3	Master Sewer Exhibit, Phase 1
km Y:\WP\Rep	orts\Residential\	Master Sewer Exhibit, Full Build-Out Condition Master Sewer Exhibit, Phase 1 123835.04 Eastmark DU 8 & 9 Master Wastewater Report.docx

i

1.0 INTRODUCTION

1.1 General Background and Project Location

The proposed Development Units 8 & 9 (Site) is anticipated to be an approximate 527-acre Development Unit (DU) within the 3,155-acre Eastmark master planned community, in Mesa, Arizona. It is a Planned Community District (PCD) which will include single-family residential, active-adult residential, various community uses, and open spaces.

The Master Wastewater Report has been prepared in accordance with Wood, Patel & Associates, Inc. (Wood/Patel's) understanding of the City of Mesa's technical requirements for wastewater collection systems, as applicable for Eastmark.

The Site is located within portions of Section 26, Township 1 South, Range 7 East of the Gila and Salt River Meridian. The Site is bounded by Williams Field Road and Pacific Proving Grounds to the south, Ray Road and the Powerline Floodway on the north, Signal Butte Road to the east, and the Crismon Road alignment and Pacific Proving Grounds on the west (refer to Plate 1 - Vicinity Map).

1.2 Scope of the Master Wastewater Report

The DU 8 & 9 Master Wastewater Report presents wastewater design flows and sewer main sizes and locations, as required, to provide wastewater service to the Site during initial and full build-out conditions. The purpose of this report is to provide a sewer analysis to reflect the developed condition of DU 8 & 9 based on a Conceptual Land Use Plan provided by TerraWest Communities, LLC. It is the goal of this DU 8 & 9 Master Wastewater Report to identify the sewers required to serve the Site, while meeting the requirements of the City's Engineering and Design Standards.

Updates to the DU 8 & 9 Master Wastewater Report may be required if significant changes are made to the land uses and assumptions utilized to prepare this report. Additionally, design criteria may change based on actual wastewater generation to calculate demand on the system in the future.

1.3 Master Wastewater Plan for Eastmark

The Master Wastewater Report Update for Eastmark, by Wood, Patel & Associates, Inc., dated May 17, 2013, was submitted to the City of Mesa for review and approval. The master report set the design criteria required within Eastmark, and set sewer basin boundaries tributary to the Elliot Road, Warner Road, and Ray Road offsite sewers. The Master Wastewater Report Update for Eastmark is currently being updated by Wood/Patel to reflect the wastewater collection system within this report, in addition to new information for other development units within Eastmark, and will be submitted to the City of Mesa for review and re-approval.

1.4 Study Area and Development Units

The study area includes the Ray Road and Williams Field Road Sewer Drainage Basins, per the *City of Mesa Wastewater Master Plan Update*, 2009. For a detailed breakdown of modeled land use areas, refer to the following:

- Table 2 Eastmark Modeled Land Use
- Table 3 DU 8 & 9 Land Use, Full Build-Out Condition
- Table 6 DU 8 & 9 Land Use, Phase 1
- Plate 2 DU 8 & 9 Master Sewer Exhibit Full Build-Out Condition
- Plate 3 DU 8 & 9 Master Sewer Exhibit Phase 1

1.5 Basis of Design Reports for Specific Individual Developments

As development progresses within the Site, Basis of Design (BOD) reports are required for specific individual developments to ensure compliance with the Master Report and the Development Unit Master Report, and to identify significant variations in land use, wastewater flows, and the wastewater infrastructure needed to serve the parcel.

2.0 EXISTING CONDITIONS

2.1 Topographic Conditions

The majority of the Site is surrounded by undeveloped desert and test tracks along the northern and western boundaries. The Site is bordered on the east by Bella Via and SB105 subdivisions, which are currently under design. The land generally slopes in a southwesterly direction at approximately 0.5 to 1 percent. The peak elevation within the Site is approximately 1,435 feet above mean sea level (MSL), located near the intersection of Signal Butte Road and Ray Road. The lowest elevation within the Site is approximately 1,410 feet MSL, located near the future intersection of Williams Field and Crismon Roads.

2.2 Existing Offsite Wastewater Infrastructure

Existing public wastewater infrastructure in the vicinity of the Site includes the following:

- An existing 12-inch gravity sewer located along Mountain Road, between Elliot Road and Pecos Road.
- An existing 12-inch gravity sewer located along Signal Butte Road, between Elliot Road and Galveston Road.
- A 27-inch and 30-inch gravity sewer located along Ray Road, between Ellsworth Road and the East Mesa Interceptor (EMI).
- An 18-inch and 21-inch gravity sewer along the Ray Road alignment north of the Powerline Floodway, between Signal Butte Road and Ellsworth Road.

2.3 Onsite Wastewater Collection Systems

The sewer outfall for DU 8 & 9 shall be at the intersection of Ray Road and Inspirian Parkway. An 18-inch sewer line has been designed to extend east from an existing 21-inch sewer line in the south half-street of Ray Road, east of Ellsworth Road, to Inspirian Parkway. This line will be constructed prior to or concurrently with the Site to provide a sewer outfall.

3.0 WASTEWATER SYSTEM DESIGN

3.1 Design Criteria

Wastewater design flows and pipe-sizing criteria utilized in this DU 8 & 9 Master Wastewater Report are based on Wood/Patel's understanding of the following:

- The Master Wastewater Report for Eastmark,
- Applicable wastewater system design criteria listed in the 2012 City of Mesa Engineering & Design Standards,
- Regionally accepted design standards,
- Title 18, Chapter 9 of the *Arizona Administrative Code*.

Table 1 – *Wastewater Design Criteria* presents the Unit Daily Wastewater Flow for each land use category, based on density and population. This design criterion is used in Table 3 – *DU 8 & 9 Land Use, Full Build-Out Condition* and Table 6 – *DU 8 & 9 Land Use, Phase 1* to determine the Unit Daily Wastewater Flow based on a conceptual land use plan. Parcels 9-1 through 9-7 are part of a proposed Active Adult community; therefore, the population density is assumed to be 2 persons per dwelling unit, in lieu of 3 persons per dwelling unit, as specified within the *City of Mesa Engineering & Design Standards* to reflect a realistic estimation of peak flows. The wastewater flow criteria are used to estimate the wastewater design flows and determine pipe sizes.

3.2 Wastewater Design Flows

Wastewater design flows for DU 8 & 9 are estimated using the design criteria listed above and the *City of Mesa 2025 General Plan*. Additionally, sewer service will be extended to the SB105 development, east of DU 8 & 9; therefore, wastewater flows from SB105 have been calculated and accounted for within this report. Projected full build-out average-day wastewater flows for DU 8 & 9 Full Build-Out and Phase 1 are summarized as follows, in millions of gallons per day (MGD):

Full Build-Out

	DU 8 & 9	Additional Eastmark	SB105	Offsite	Total
Ray Road Outfall:	0.28 MGD	0.57 MGD	0.08 MGD	1.04 MGD	1.98 MGD
Elliot Road Outfall:	0.00 MGD	0.76 MGD	0.00 MGD	0.00 MGD	0.76 MGD
Total:	0.28 MGD	1.33 MGD	0.08 MGD	1.04 MGD	2.74 MGD

Phase 1

		Additional			
	DU 8 & 9	Eastmark	SB105	Offsite	Total
Ray Road Outfall:	0.12 MGD	0.57 MGD	0.00 MGD	1.04 MGD	1.73 MGD
Elliot Road Outfall:	0.00 MGD	0.76 MGD	0.00 MGD	0.00 MGD	0.76 MGD
Total:	0.12 MGD	1.33 MGD	0.00 MGD	1.04 MGD	2.49 MGD

Sewer pipe capacities are based upon conveying the flow at two-thirds of the pipe capacity. It is Wood/Patel's understanding that wet-weather infiltration is accounted for within the City of Mesa peaking factors listed in the 2012 City of Mesa Engineering & Design Standards.

Detailed design flow calculations are provided in Table 4 – Wastewater Model, Full Build-Out Condition, Table 5 – Calculated Pipe Capacities, Full Build-Out Condition, Table 7 – Wastewater Model, Phase 1, and Table 8 – Calculated Pipe Capacities, Phase 1. Wood/Patel utilized criteria within the 2012 City of Mesa Engineering & Design Standards based on static peaking methodology to calculate peak wet-weather flows for Eastmark. Static methodology is required by the City on an individual project basis to size onsite sewer lines.

It is our understanding the City utilized a diurnal peaking methodology to evaluate the overall tributary area, including Eastmark, to aid in the design of the Ray Road sewer line, from Ellsworth Road to the EMI. Diurnal peaking methodology is based on observed and/or estimated daily wastewater flow cycles for comparable developed areas, and is generally less conservative than static modeling resulting in lower peak flows. As a result, the peak wet-weather flows calculated in this report for Eastmark may vary from those used in designing the Ray Road sewer line. The controlling section of the Ray Road sewer is an offsite 30-inch pipe at 0.2 percent slope. The capacity of this pipe flowing full is 11.94 MGD, and at d/D = 0.9 is 12.7 MGD. Therefore, the peak wet-weather flows for Eastmark would not exceed the capacity of the Ray Road sewer.

4.0 PROPOSED SYSTEM

4.1 Planned Wastewater Infrastructure

DU 8 & 9 is proposed to contribute wastewater flow to the Ray Road Sewer Drainage Basin. Currently, the offsite Ray Road sewer has been constructed downstream of Eastmark, from Ellsworth Road to the EMI. The 18-inch Ray Road sewer, proposed to serve DU 8 & 9, is currently in the review process with the City of Mesa.

4.1.1 Ray Sewer Drainage Basin

The Ray Road Sewer Drainage Basin at Ellsworth Road receives flow from an existing diversion structure at Mountain Road. All flow north of Ray Road is currently diverted to the Ray Road Sewer, while flow from development south of Ray Road is conveyed south to Pecos Road. It is the City's intent to continue this mode of operation to provide additional capacity in the Pecos Road Sewer for future development along Pecos Road. This report considers the total design flow from the existing and proposed developments east of Eastmark for the Ray Road sewer contributing full build-out flow at this time. A portion of the upstream flow is accounted for per the Master Wastewater Report for Ray Road Sewer between Ellsworth and Mountain Roads, prepared by CMX, L.L.C., dated November 18, 2005. Additionally, SB105 has been included in the Ray Road Sewer Basin, which was previously included in the Williams Field Road Sewer Basin. Since the future Williams Field Road Sewer is planned to discharge into the Ray Road sewer at Ellsworth Road, the existing Ray Road Sewer west of Ellsworth Road was designed to accommodate wastewater flows from SB105. DU 7 is currently under construction, and is contributing wastewater flows to the Ray Road Sewer.

4.2 Pipe Sizing

Proposed sewer lines for the Site were sized to accommodate peak wet-weather flow conditions. The onsite collection system includes planned sewer mains with diameters ranging from 8 inches to 18 inches. Refer to Tables 4 and 5 for the Wastewater Model and Calculated Pipe Capacities, and Plate 2 for the planned DU 8 & 9 wastewater infrastructure.

4.3 Sewer Line Infrastructure Phasing

DU 8 & 9 is planned to be developed in phases. A preliminary phase (Phase 1) boundary is shown on Plate 3 – *Master Sewer Exhibit, Phase 1*. Phase 1 includes Parcels 8-1 through 8-5, and 9-1 through 9-3. The analysis in this report identified the required wastewater collection system infrastructure to provide service based on preliminary land use. Local sewer lines for future individual parcels have not been analyzed within this report. Approximately 6,100 linear feet of 18-inch sewer along Ray Road west of Inspirian Parkway, and along Inspirian Parkway south of Ray Road, will be constructed prior to or concurrently with DU 8 & 9 to provide a sewer outfall for the Site. The proposed main trunk line infrastructure is listed below:

Phase 1

- Proposed collection sewers from the intersection of Ray Road and Inspirian Parkway to the Phase 1 boundary through Parcel 9-1 and along proposed South Winchester, will consist of approximately:
 - o 2,300 feet of 15-inch sewer
 - o 500 feet of 12-inch sewer
 - o 1,500 feet of 10-inch sewer
- Proposed Parcels 8-1 through 8-5 main collection sewer will consist of approximately:
 - o 6,700 feet of 8-inch sewer

Remaining DU 8 & 9

- Proposed Parcels 8-6 through 8-9 main collection sewer consisting of approximately:
 - o 2,200 feet of 8-inch sewer
- Proposed Parcels 9-4 through 9-7 collection sewer consisting of approximately:
 - o 300 feet of 10-inch sewer
 - o 4,100 feet of 8-inch sewer

5.0 CONCLUSIONS

The Master Wastewater Report for Development Units 8 & 9 at Eastmark presented herein meets City of Mesa standards and requirements, and serves as a guide for construction documents associated with the planned wastewater system. The following items highlight critical conclusions:

- 1. Development Units 8 & 9 is anticipated to be 469 acres within the 3,155-acre Eastmark master planned community annexed into the City of Mesa.
- 2. The wastewater system presented is based on the projected full build-out condition of the Site.
- 3. Wastewater design criteria are based on Wood/Patel's understanding of the 2012 City of Mesa Engineering & Design Standards, regionally-accepted design standards, and Title 18, Chapter 9 of the Arizona Administrative Code.
- 4. The approximate average daily flow generated at build-out by the Site is 0.28 MGD, per Section 3.2 of this report.
- 5. Proposed onsite sewer mains are sized to accommodate peak wet-weather design flow for the full build-out condition.
- 6. The planned public wastewater collection systems outfall into existing and proposed gravity sewer lines located along Ray Road.
- 7. Wood/Patel's model of the proposed wastewater system provides conveyance and capacity in conformance with City of Mesa's standards, and Title 18 of the *Arizona Administrative Code*.

Wastewater Design Criteria

CMX, 11/18/2005.

Project: Location: References: DU 8 8 9 at Eastmark

Mesa, Arizona

2012 City of Mesa Engineering Design Standards

CIVIL ENGINEERS * HYDROLOGISTS * LAND SURVEYORS * CONSTRUCTION MANAGERS

Proj. Number: 123835.04 Proj. Engineer: Darrell Smith, P.E.

UNIT DAILY RESIDENTIAL WASTEWATER FLOWS WASTEWATER DESIGN UNIT DAILY DWELLING UNIT WASTEWATER FLOW\$ DENSITY POPULATION DENSITY (PER CAPITA) **FLOWS** PERSONS VALUE UNITS UNITS Units NOTES VALUE PER ACRE Value Units Value LAND USE CATEGORY LAND USE Low Density Residential GPD/ Persons GPD/AC 100 LDR-1 (LOR 0-1) DU / Acre DU 1.25 Person Persons/ GPD/ GPD/AC DU / Acre 200 LDR-2 LDR 0-1 & LDR 1-2 AVG. Low Density Residential DU 2.50 80 Person Persons GPD/AC DU / Acre 3.60 80 288 LDR-3 (LDR-1-2) 1,2 Source: Dwelling unit GPD/ Medium Density Residential Persons/ GPD/AC density divisions are DU / Acre 9.00 80 Person DU MDR-1 (MDR 2-4) 3.0 GPD/ based on City of Mesa Persons GPD/AC 2025 General Plan. Unli Person GPD/ MDR 2-4 & MDR 4-6 AVG. DU / Acre DΟ 12,50 80 1,000 MDR-2 Medium Density Residential (MDR 4-6) Persons/ wastewater flows are GPD/AC hased on the City of .280 5.0 DU / Acre 3.2 DU 16.00 80 Person MDR-3 Mesa 2012 Engineering Medium Density Residential GPD/ GPD/AC and Design Standards. MDR-4 (MDR 6-10) DU / Acre DΟ 17.55 Person 1.404 GPD/ High Density Residential Persons GPD/AC 22.00 80 1,760 (HDR 10-15) DU / Acre 2.0 שַׁם Person HOR-1 High Density Residential Persons/ GPD/ GPD/AC DU / Acre 28.90 2312 (HDR 15+) 17.0 1.7 80 Person HOR-2 DU Mixed Use/Residential (MUR) Personsi GPD/AC 15.0 DU / Acre 1.7 UG 25.50 80 Person 2.040 MUR-1 Residential UNIT DAILY NON-RESIDENTIAL WASTEWATER FLOWS WASTEWATER DESIGN UNIT DAILY **FLOWS** WASTEWATER (PER CAPITA) DWELLING UNIT DENSITY POPULATION DENSITY **FLOWS** PERSONS LAND USE VALUE UNITS VALUE UNITS PER ACRE Value Units Value Units NOTES GPD/ ROOM Hotel GPD/ GPD/ Source: City of Mesa 2012 Employees Commercial/Retail Engineering and Design Standards. 23.0 23.00 54 Employee AC GPO/ Office Acre Education/Civic/ Employees/ GPD/ Church 15.0 Acre 15.00 54 Employee 810 AC OFFSITE WASTEWATER DESIGN UNIT DAILY **FLOWS** WASTEWATER (PER CAPITA) DWELLING UNIT DENSITY POPULATION DENSITY **PERSONS FLOWS** UNITS NOTES Value Units LAND USE VALUE VALUE LIMITS PER ACRE Value Units GPO/ Employees/ GPD/ 14.00 756 14.0 54 Employee GPD/ AÇ. CC Acre Employees/ GPD AC GPO/ 23.0 Acre 23.00 Employee 1,242 Employees/ GPD/ 14.00 Employee 756 AC RC Acre Source: City of Mesa 2012 Employees/ GPD/ _ _ Engineering and Design Standards 432 AC GPD/ BPL 8.0 Acre 8.00 54 Employee and the City of Mesa 2025 General **Employees** GPD/ Employee 594 AC GPD/ Plan NC 11.0 11.00 Acre Employees/ GPD/ Acre п 7.00 Employee AC GPD/ Employees _ --AC GPD/ 15.0 15.00 54 Employee 810 MUE, <u>Acre</u> Employees GPD/ 810 15.0 15.00 Employee AC ĠI Source: Master Wastewater Report for Ray Road Sewer Between GPD/ Ellsworth and Mountain Roads, by

Description	Value	Units	Note(s)
General			
Minimum Velocity (d/D=2/3)	2	ft/sec	1
Maximum Flow Velocity (d/D=2/3)	9	ft/sec	1
Maximum Peak Flow Depth-to-Diameter Ratio (d/D)	0.67	+	
Minimum Pipe Diameter	8	'n	1
Manning's "n" value	0.013		2
Peaking Factor (ADF< 1.0 MG0)	3		f
Peaking Factor (1.0 < ADF< 10.0 MGD)	2.5		1
Peaking Factor (10.0 < ADF< 20.0 MGD)	2.3		1 1

1,040,576 GPD / 1470 Acres = 706 GPD/AC

OFFUPSTREAM

1. Per The City of Mesa 2012 Engineering & Design Standards

2. Title 18, Chapter 9 of the Arizona Administrative Code

Eastmark Modeled Land Use

Proj. Number: 123835.04 Proj. Engineer: Darrell Smith, P.E.

Project:

DU 8 & 9 at Eastmark

Mesa, Arizona Location:

Total Residential Units 3,572 Mixed Use Residential Units : Residential Total 954.8 3,572 HDR-2 ; HDR-1 410 37.3 MDR4 PRELIMINARY RESIDENTIAL LAND USE AND DWELLING UNIT BREAKDOWN MDR-3 148.4 699 MDR-2 22.4 8 MDR-1 726.7 2,364 LDR-3 20.0 8 LDR-2 EASTMARK and Use Acreage Dwelfing Units

	_ = -	Γ	Τ	Τ	Γ	Τ		Γ	Γ	Γ	
	Unit Daily Wastewater Flow ⁽³⁾ (GPD/AC)	:	<u> </u>	,			11.680	903	646	574	1
	Avg. Day Wastewater Development Flow Unit Flow Area (GPD) (AC)		1		ŀ	1	65.0	581.5	198.8	270.5	1,115.8
	Avg. Day Wastewater Flow (GPD)	_	,	:	1	,	759.168	524.952	128.400	155.324	1,567,844
	Golf (AC)	,	,	,	,	,	-	1	:	-	
	Other (AC)	,	**	1		1	1	35.3	6,8		42.1
	Civic (AC)	:	1	:	1	1	:	2.5	ı	12.4	14.9
	Church (AC)	1		,	1	1		13.5		1	13.5
	Education (AC)	1	ļ	,			ı	20.0	,	ı	20.0
	Total Floor Area (sq. ft.)	-	1	ı	ı	1	1,340,000	15,000	,	-	1,355,000
	Gross Non-Residential ⁽²⁾⁽⁵⁾ (AC)	1	*				65.0	5.5	7	;	70.5
S	Keys ⁽¹⁾	ı			1	1	-	ı		ŀ	-
LCULATION	Total Dwelling Units	1	ı	ı	1	,	-	2,129	535	806	3,572
ER FLOW CA	Residential (AC)	1	ļ	-	,	,	,	504.7	192.0	258.1	954.8
VASTEWAT	Total Area (AC)	'	-	-	,	3	65.0	581,5	198.8	270.5	1,115.8
EASTMARK - WASTEWATER FLOW CALCULATIONS	Development Total Area Residential (AC)	-	2	3	4	5	9	7	8	ð	Subtotal:

(1) Anticipated number of "Keys" represents hotel and resort uses. This includes approximately 8 acres within DU-1 and 133 acres within DU-5. UNIT DAILY RESIDENTIAL WASTEWATER FLOWS⁽⁴⁾

(2) Non-residential wastewater flows are calculated based on net non-residential acreage. (3) Unit dally wastewater flow calculations do not include golf course acreage. UNIT DAILY WASTEWATER FLOWS

(4) See Table 1 - Wastewater Design Criteria for additional design criteria information.

(6) Non-residential acreage of approximately 260 acres for the First Solar site is not represented within Table 4 as it drains to the Elliot Road Sewer.

GPD/AC

8

LPR-1

Units

Value

LAND USE CATEGORY

Abbreviations: UNIT DAILY WASTEWATER
Value Units JNIT DAILY NON-RESIDENTIAL WASTEWATER FLOWS⁽⁹) GPD/AC GPD/AC GPD/AC GPD/AC GPD/AC GPD/AC GPD/AC GPD/AC 200 288 288 720 720 720 760 760 760 LAND USE LDR-3 LDR-3 MDR-2 MDR-4 MDR-1 HDR-1 MUR-1

GPD/ROOM

150

GPD/AC GPD/AC

810.

1,242

Commercial / Retail / Office

Hotel

(Net Area) Education/Civic/ Church

AC = Acres GPD = Gallons Per Day GPD/AC = Gallons Per Day Per Acre

DU 8 & 9 Land Use, Full Build-Out Condition

TABLE 3 - DU 8 & 9 LAND USE, FULL BUILD-OUT CONDITION

Proj. Number: 123835.04 Proj. Engineer: Darrell Smith, P.E.

Project: Location:

DU 8 & 9 at Eastmark Mesa, Arizona

	Total Avg Day	17,760	20,880	15,360	10,080	ŀ	21.840	17,760	9,360	15,360	30,240	15,840	10,044	25,440	23,200	14,400	36,160	283,724
	Avg Day	17,760	20,880	15,360	10,080	1	21,840	17,760	9,360	15,360	30,240	15,840	10,044	25,440	23,200	14,400	36,160	l _
	GPDC	80	80	80	80	:	80	08	80	08	80	80	54	80	80	80	80	
	Total Population	222	261	192	126	ı	273	222	117	192	378	198	186	318	290	180	452	3607
	Population Density (persons/ PA	3	3	3	3	ŀ	က	က	3	က	2	2	15	2	2	2	2	
	Land Use Du	MDR-1	MDR-1	MDR-1	MDR-1	PARK	MDR-1	MDR-1	LDR-3	MDR-1	MDR-1	MDR-1	CIVIC	MDR-1	MDR-1	MDR-2	MDR-1	
Z							_											:
REAKDOW	Non-Residential Acres	1	-	-		6.8	-	1	-	ŀ	1	-	12.4	-		-	-	19.2
G UNIT BR	Density (DU/AC)	3,23	2:90	2.59	2.01	1	3.86	2.62	1.95	2.95	3.50	3.11	1	3.22	3.64	4.02	3.72	
ND DWELLIN	Residential Acres	22.9	30.0	24.7	20.9	t	23.6	28.2	20.0	21.7	54.0	31.8	1	49.4	39.8	22.4	60.7	450.1
LAND USE A	No. of DUs	74	87	64	42		91	74	39	64	189	66	1	159	145	06	226	1443
PRELIMINARY LAND USE AND DWELLING UNIT BREAKDOWN	Parcel	8-1	8-2	8-3	8-4	8-5	9-8	8-7	8-8	8-9	9-1	9-5	9-3	9-4	9-5	မှ	2-6	DU 8 & 9 Totals

¹⁾ Parcels 9-1 through 9-7 are part of a proposed Active Adult community therefore the assumption of 2 persons per dwelling unit in lieu of 3 persons per dwelling unit for the population density would produce a more accurate estimation of peak flows.

Wastewater Model, Full Build-Out Condition

CIVIL ENGINEERS * HYDROLOGISTS * LAND SURVEYORS * CONSTRUCTION MANAGERS

Project: Location: References: DU 8 & 9 at Eastmark

Mesa, Arizona

City of Mesa 2012 Engineering and Design Standards Arizona Administrative Code, Title 18, Chapter 9

Proj. Number: 123835.04 Proj. Engineer: Darrell Smith, P.E.

FROM NODE	TO NODE	SEWER AREA(S)/PARCEL SERVED	AREA SERVED (ACRES)	UNIT FLOW (GPD/AC)	PARCEL ADF (GPD)	SEWER NODE ADF (GPD)	TOTAL ADF (GPD)	PEAKING FACTOR	PEAK WET WEATHER FLOW (GPD)
	ONT WOOM TO	ream Wastewater Flo	25.3	**************************************		C4 200	61.382	3.0	784,146
R21	R19	7-9 7-11	7.5 19.1	814 1340	6,102 25,600	61,382	01,362	9.0	
	Contract Section	7-6	26.8	* 699	18,720				
R24	R19	7-7 7-10	31.4 25.4	795 1:090	24,960 27,680	95,200	95,200.	9.0	285,600
		7-12	19.6	1,216	23,840				
R19*	F22	7	7. Z#.		30.00 75 a 10.00	Table 2 (1 Law 2011)	156.582	3.0	469,746
		7-13	20.1 17.3	1,043	20,960 30,400				
R22	R23	7-15	18.1	1,189	21,520	112,940	269,522	3.0	808,566
S.P.	9	7.23	20.0	1,760	35,200			5	
		7-24 *** 7-16	6.0 25.4	810 945	4,860 24,000	Marie Vice and a			
R23	R26	7-17	23.4	800	18,720	58,920	328,442	3:0	985,326
	. The second second	7-22 7-27	20.0	810	16,200				
	CONTRACTOR OF STREET	7-18	35,3 28.9	 706	20:400				
9 (53) - 1 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4		7-19	≥ 25.1	937	23,520				2×8000×0×
R26	R27	7-20 7-21	20,1 22.1	955 923	19,200 20,400	92,430	420,872	3,0	1,262,616
		7.25	25	821	2,052	- 2			
		7-26	5.5	1.247	€ 6858 ≪		3 24		
		OFFUPSTREAM*	1,473	707	1,041,710				
R46	R45	PHASE 1 ADMIN	15	3,200, 22	48,002	1 145 632	1,145,632	2.5	2.864.080
	ייייי	7-1	24.0	926 . 579	19,440 j 20,160	1.50	, , , , ,		
2	7	7-5	34.8 26.9	607	16.320				
R45	R27	7-2	20.8	1,058	22,000	48,160	1 193 792	2.5	2:984,480
R27	R12	7-3	33.1	790	26,160		1,614,664	,2:5	4,036,660
R12	R11	7. 9 J		6/8/ 4 /7/8	7.7 .0 14	nit de s	1.614,664	2.5	4,036,660
R11	R2	, and a second				ea ano	1,614,664	2.5	4,036,660
R42 R41	R41 R40	SB105 9-6	99.1 22.4	840 643	83,280 14,400	83,280 14,400	83,280 97,680	3.0	249,840 293,040
R40	R35	9-2	31.8	498	15,840	25,884	123,564	3.0	370,692
1140	1700	9-3	12.4	810	10,044	20,004	120,004	0.0	0,0,002
R36C	R36A	9-7 18% of 9-5	60.7 7.2	<u>596</u> 578	36,160 4,160	48,800	48,800	3.0	146,400
	7,00	33% of 9-4	16.3	520	8,480				•
R36B	R36A	82% of 9-5	32.6	584	19,040	36,000	36,000	3.0	108,000
R36A	R35	67% of 9-4	33.1	512 	16,960		84,800	3.0	254,400
R35	R34						208,364	3.0	625,092
R34	R32	18% of 9-1	9.7	561	5,440	5,440	213,804	3.0	641,412
		8-6 8-7	23.6 28.2	925 630	21,840 17,760				
R39	R38 A	42% of 8-3	10.4	623	6,480	58,320	58,320	3.0	174,960
nos	KJOA	8-5	6.8			30,020	00,020	0.0	11-1,000
		67% of 8-4 26% of 8-2	14,0 6.4	480 863	6,720 5,520				
		58% of 8-3	14.3	621	8,880				
R38B	R38A	56% of 8-2	16.8	700	11,760	38,400	38,400	3.0	115,200
R38A	R33	8-1 	22.9	776	17,760 		96,720	3.0	290,160
* 1001 <u>}</u>	1100	8-9	21.7	708	15,360		~~;·=V	V.V.	_551.00
R37	R33	8-8	20.0	468	9,360	31,680	31,680	3.0	95,040
·•		33% of 8-4 18% of 8-2	6.9	487 667	3,360	·			
R33	R32	10% DI 8-2	5.4 	667 	3,600		128,400	3.0	385,200
R32	R31	42'% of 9-1	22.7	557	12,640	12,640	354,844	3.0	1,064,532
R31	R30 R2	40'% of 9-1 	21.6	563	12,160	12,160	367,004 367,004	3.0 3.0	1,101,012 1,101,012
R30					-	1			

CIVIL ENGINEERS * HYDROLOGISTS * LAND SURVEYORS * CONSTRUCTION MANAGERS

Project: Location: References: DU 8 & 9 at Eastmark

Mesa, Arizona

City of Mesa 2012 Engineering and Design Standards

Arizona Administrative Code, Title 18, Chapler 9

Proj. Number: 123835.04 Proj. Engineer: Darrell Smith, P.E.

FROM Node	TO NODE	SEWER AREA(S)/PARCEL SERVED	AREA SERVED (ACRES)	UNIT FLÓW (GPD/AC)	PARCEL ADF (GPD)	SEWER NODE ADF (GPD)	TOTAL ADF (GPD)	PEAKING FACTOR	PEAK WET WEATHER FLOW (GPD)
Ray Road Onsit	e And Offsite Upst	ream Wastewater Flo	ews						
R1A	R1						1,981,668	2.5	4,954,170
R1	RAY ROAD SEWER				₩-		1,981,668	2.5	4,954,170
Total DU 8 & 9 F Sewer	low to Ray Road		469.3		283,724	283,724	283,724		851,172
Total Eastmark : Sewer	Flow to Ray Road		2543.4		856,678	856,678	856,678		2,570,034
Total Flow to Ra	y Road Outfall at	,	2636.5		1,981,668	1,981,668	1,981,668		4,954,170

Calculated Pipe Capacities, Full Build-Out Condition

DU 8 & 9 at Eastmark

Project: Location: References:

TABLE 5 - CALCULATED PIPE CAPACITIES, FULL BUILD OUT CONDITION CIVIL ENGINEERS * HYDROLOGISTS * LAND SURVEYORS * CONSTRUCTION MANAGERS Proj. Number: 123835.04 Proj. Engineer: Darrell Smith, P.E.

Mesa, Arizona ADEQ Bulletin No. 11 City of Mesa 2012 Engineering and Design Standards

TO NOTES PIPE DIA MODELED PIPE PEAK WET AETHER WEATHER WEATHER WELDCITY CIPD) CIPD								PEA	PEAK FLOW RESULTS	JLTS	
Bright 12 0.00045 1,522,778 184/146 0.24 3.3 R19 R22 R19 8 0.0056 1,522,778 285,610 0.59 2.3 R23 R23 15 0.0026 1.522,778 489,746 0.039 2.7 R23 R23 15 0.0020 1.903,379 888,566 0.45 2.7 R27 R26 15 0.0020 1.903,379 888,566 0.59 2.7 R27 R27 16 0.0020 1.903,379 888,566 0.59 2.7 R27 R27 18 0.0020 1.903,379 888,480 0.59 2.7 R27 R27 18 0.0020 1.903,379 4.036,660 0.59 2.7 R41 10 0.0020 1.596,069 4.036,660 0.63 2.7 R41 10 0.0020 5.596,069 4.036,660 0.65 2.2 R36 R35 10	FROM	TO	NOTES	PIPE DIA. (INCHES)	MODELED PIPE SLOPE (FT / FT)	PIPE CAPACITY (GPD)	PEAK WET WEATHER FLOW (GPD)	d/D (WET WEATHER)	FLOW VELOCITY (FT/S) AT d/D=2/3	SURPLUS CAPACITY (WET WEATHER)	PERCENT OF CAPACITY (WET WEATHER)
R19 R2 0.00504 1.522,178 1841446 0.024 3.3 R22 R23 12 0.0050 1.522,778 2.66,000 0.050 2.7 R22 15 0.0020 1.502,379 98.8,566 0.59 2.7 R26 15 0.0020 1.903,379 98.8,566 0.55 2.7 R27 15 0.0020 1.903,379 98.8,526 0.55 2.7 R27 16 0.0020 1.903,379 98.8,526 0.55 2.7 R27 17 0.0020 1.903,379 1.262,616 0.59 2.7 R27 18 0.0020 1.903,379 4.036,660 0.65 2.7 R41 21 0.0020 5.596,069 4.036,660 0.63 4.0 R41 10 0.0020 5.596,069 4.036,660 0.63 2.3 R34 10 0.0020 5.596,069 4.036,660 0.63 2.3 R35	Ray Road B	asin Pipe Sizes			Let		5. W.				
R19 R22 12 0.0050 1562,778 285,600 0.50 2.8 R22 15 0.0020 1.562,778 888,566 0.45 2.7 R26 15 0.0020 1.903,379 885,586 0.51 2.7 R26 15 0.0020 1.903,379 885,586 0.51 2.7 R27 18 0.0024 6.596,609 4.036,660 0.63 4.0 R12 21 0.0029 5.596,099 4.036,660 0.63 4.0 R21 21 0.0029 5.596,099 4.036,660 0.63 4.0 R34 10 0.0029 5.596,099 4.036,660 0.63 4.0 R41 10 0.0030 5.596,099 4.036,660 0.63 2.2 R35 10 0.0030 5.596,099 4.036,660 0.63 2.2 R35 10 0.0020 5.596,099 4.036,660 0.63 2.2 R35 <td< th=""><th>77</th><th>E KIB</th><th>100 A 100 A</th><th>X</th><th>0.0045</th><th>1,522,778</th><th>184 146</th><th>0.24</th><th>ः ° 3.3ः ः</th><th>1,338,632</th><th>12.1%</th></td<>	77	E KIB	100 A	X	0.0045	1,522,778	184 146	0.24	ः ° 3.3ः ः	1,338,632	12.1%
R22 12 0.0045 1.52.776 469.746 0.39 3.3 R23 15 0.0020 1.903.379 888.866 0.45 2.7 R26 15 0.0020 1.903.379 888.866 0.51 2.7 R27 18 0.0020 1.903.379 9.85.326 0.51 2.7 R27 18 0.0020 1.903.379 2.864.080 0.65 2.7 R12 21 0.0029 5.586.089 4.036.660 0.63 4.0 R11 21 0.0039 5.586.089 4.036.660 0.63 4.0 R40 10 0.0030 5.586.089 4.036.660 0.63 4.0 R41 10 0.0030 5.586.089 4.036.660 0.63 2.3 R44 10 0.0027 740.224 249.840 0.40 2.3 R35A 8 0.0027 740.224 249.840 0.40 2.2 R35A 8 0.0033<	8 R24			zwyde 🗞 🚈	0.0050	S 564,029	285,600	0.20	2.8	278.429	20.6%
R23 15 0.0020 1.903.379 808.566 0.45 2.7 R26 15 0.0020 1.903.379 808.526 0.51 2.7 R27 15 0.0020 1.903.379 9.85,326 0.51 2.7 R27 18 0.0020 1.903.379 9.86,326 0.51 2.7 R27 18 0.0020 6.623.956 2.864.080 0.46 6.4 R12 21 0.0020 5.710.307 2.84.480 0.51 5.5 R11 21 0.0020 5.596.099 4.036.660 0.63 4.0 R1 10 0.0027 7.40.224 2.93.040 0.40 2.3 R35 10 0.0027 7.40.224 293.040 0.40 2.2 R35 10 0.0027 7.40.224 293.040 0.40 2.2 R35 8 0.0023 4.51.224 1.46.400 0.39 2.2 R35 10 0.0023 <td>R19</td> <td>R22</td> <td>1. 52. 40.24 (S. 10.24 (S.</td> <td>12</td> <td>0.0045</td> <td>ΙΝ</td> <td>469,746</td> <td>0.39</td> <td>3.3</td> <td>1.053.032</td> <td>30.8%</td>	R19	R22	1. 52. 40.24 (S. 10.24 (S.	12	0.0045	ΙΝ	469,746	0.39	3.3	1.053.032	30.8%
R26 15 0.0020 1.903.379 985.326 0.51 2.7 R27 15 0.0020 1.903.379 1.626.016 0.59 2.7 R45 18 0.0020 5.710.307 2.664.01 0.46 6.4 R12 21 0.0029 5.596.069 4.036.660 0.653 4.0 R12 21 0.0020 5.596.069 4.036.660 0.653 4.0 R41 10 0.0020 5.596.069 4.036.660 0.653 4.0 R44 10 0.0027 7.40.224 2.984.480 0.43 2.3 R40 10 0.0027 7.40.224 2.98.40 0.40 2.3 R35 10 0.0027 7.40.224 2.98.40 0.40 2.3 R35 8 0.0027 7.40.224 2.49.84 0.40 2.3 R35 10 0.0027 7.40.224 2.49.84 0.42 2.2 R35 10 0.002	R22			. 15 ·	0.0020	1.903.379	808,566	0.45	2.7	1.094.813	42.5%
R27 15 0.0020 1.903.379 1.262.616 0.59 2.7 R45 18 0.0094 6.623.956 2.864.080 0.46 6.4 R72 21 0.0020 5.756.069 4.036.660 0.63 4.0 R1 21 0.0020 5.596.069 4.036.660 0.63 4.0 R4 10 0.0027 7.40.224 2.93.840 0.63 4.0 R35 10 0.0027 7.40.224 2.94.840 0.40 2.3 R35 10 0.0027 7.40.224 2.94.840 0.63 2.2 R35 10 0.0027 7.40.224 2.94.840 0.63 2.2 R35 10 0.0027 7.40.224 2.94.840 0.65 2.3 R35 8 0.0027 7.40.224 2.94.840 0.60 2.3 R35 1 0.0027 7.40.224 2.94.840 0.50 2.3 R34 1 0.0027 <td>R23</td> <td></td> <td>5 68475 8 5</td> <td>15</td> <td>0,0020</td> <td>1.903.379</td> <td>985,326</td> <td>0.51</td> <td>2.7</td> <td>918.053</td> <td>51.8%</td>	R23		5 68475 8 5	15	0,0020	1.903.379	985,326	0.51	2.7	918.053	51.8%
R45 18 0.00094 6.623.956 2.864.080 0.46 6.4 R27 18 0.0070 5.710.307 2.884.480 0.651 5.5 R12 21 0.0020 5.596.069 4.036.660 0.653 4.0 R41 10 0.0030 5.596.069 4.036.660 0.63 4.0 R41 10 0.0027 7.40.224 2.49.840 0.40 2.3 R35 10 0.0027 7.40.224 2.49.840 0.40 2.3 R35 10 0.0027 7.40.224 2.49.840 0.40 2.3 R35 8 0.0027 7.40.224 370.692 0.50 2.2 R36 8 0.0033 451.224 146.400 0.40 2.2 R35 10 0.0033 451.224 146.400 0.42 2.2 R34 1 0.0025 7.41.224 146.400 0.43 2.2 R34 1 0.0025	R26				0.0020	1,903,379	1,262,616	0,59	-2.7	640,763	66.3%
R27 18 0.0070 5.710.307 2.984.480 0.51 5.5 R12 21 0.0029 5.596.069 4.036.660 0.653 4.0 R11 21 0.0020 5.596.069 4.036.660 0.653 4.0 R41 10 0.0020 5.596.069 4.036.660 0.653 4.0 R35 10 0.0027 740.224 249.840 0.40 2.3 R35 10 0.0027 740.224 293.040 0.43 2.2 R36A 8 0.0027 740.224 293.040 0.43 2.2 R35A 8 0.0023 451.224 108.000 0.39 2.2 R35A 10 0.0025 704.975 254.400 0.42 2.2 R35A 8 0.0025 704.975 254.400 0.42 2.2 R34 15 0.0026 1.167.463 625.092 0.53 2.5 R38A 8 0.0028	R46			ે જે 18 ે	0.0094	6,623,956	2.864.080	0.46	6.4	3.759.876	43.2%
R12 21 0.0029 5.596.069 4.036.660 0.63 4.0 R11 21 0.0030 5.596.069 4.036.660 0.63 4.0 R41 10 0.0027 740.224 249.80 0.40 2.3 R40 10 0.0027 740.224 249.80 0.40 2.3 R35 10 0.0027 740.224 230.040 0.40 2.3 R35 10 0.0027 740.224 249.80 0.40 2.3 R36 8 0.0033 451.224 146.400 0.43 2.2 R35 10 0.0033 451.224 146.400 0.42 2.2 R35 10 0.0033 451.224 146.400 0.42 2.2 R34 12 0.0035 704.975 254.400 0.44 2.2 R34 15 0.0025 704.975 254.400 0.43 2.2 R38 8 0.0026 777.885<	R45				0.0070	5,710,307	2,984,480	0.51	5.5	2.725.827	52.3%
R11 21 0.0030 5.596,069 4,036,660 0.63 4,0 R41 10 0.0027 740,224 249,840 0.40 2.3 R41 10 0.0027 740,224 293,040 0.43 2.3 R36A 8 0.0027 740,224 370,692 0.50 2.3 R36A 8 0.0033 451,224 176,400 0.39 2.2 R35A 10 0.0025 1.167,463 625,092 0.50 2.2 R34 12 0.0025 1.167,463 625,092 0.42 2.5 R34 12 0.0025 1.167,463 641,412 0.43 2.3 R34 8 0.0038 473,785 174,960 0.43 2.3 R38 8 0.0038 767,080 115,200 0.27 3.8 R33 8 0.0038 473,785 9.040 0.31 2.3 R34 13 0.044 1.566,	R27			21	0	2,596,069	4.036.660	0.63	4.0	1.559.409	72.1%
R2 R2 21 0.0030 5.596,069 4,036,660 0.653 4,0 R41 10 0.0027 740,224 249,840 0.43 2.3 R35 10 0.0027 740,224 293,040 0.43 2.3 R36A 8 0.0027 740,224 146,400 0.39 2.2 R36A 8 0.0033 451,224 146,400 0.34 2.2 R35A 10 0.0025 704,975 254,400 0.42 2.5 R34 12 0.0025 704,975 254,400 0.42 2.5 R34 12 0.0025 1,167,463 625,092 0.53 2.5 R34 15 0.0014 1,586,149 641,412 0.44 2.2 R35 8 0.0038 473,785 174,960 0.43 2.3 R35 8 0.0038 473,785 95,040 0.31 2.4 R34 14 1,064,532	R12			್ಟ ≅ 21 - ∵	0:0030	5,596,069	4.036,660	0.63	4.0	1.559.409	72.1%
R41 10 0.0027 740,224 249,840 0.40 2.3 R40 10 0.0027 740,224 283,040 0.43 2.3 R36A 8 0.0027 740,224 370,692 0.50 2.3 R36A 8 0.0033 451,224 146,400 0.39 2.2 R36A 8 0.0035 704,975 254,400 0.42 2.2 R34 12 0.0025 7.167,463 625,092 0.53 2.5 R34 15 0.0025 1.167,463 625,092 0.53 2.5 R34 15 0.0014 1.586,149 641,412 0.44 2.2 R38A 8 0.0038 473,785 174,960 0.44 4.3 R33 8 0.0038 473,785 1.506 0.44 2.3 R33 8 0.0040 496,346 385,200 0.67 2.4 R31 18 0.0040 496,346 </td <td>RIT</td> <td>) 75</td> <td>200</td> <td></td> <td>0:0030</td> <td>5,596,069</td> <td>4,036,660</td> <td>∴0:63</td> <td>4.0</td> <td>1.559,409</td> <td>72.1%</td>	RIT) 75	200		0:0030	5,596,069	4,036,660	∴0:63	4.0	1.559,409	72.1%
R40 10 0.0027 740,224 293,040 0.43 2.3 R35A 10 0.0027 740,224 370,692 0.50 2.3 R36A 8 0.0033 451,224 146,400 0.39 2.2 R34 10 0.0035 451,224 146,400 0.39 2.2 R34 10 0.0025 704,975 254,400 0.42 2.2 R34 12 0.0025 1,167,463 625,092 0.53 2.5 R38A 8 0.0038 473,785 174,960 0.43 2.3 R33 8 0.0038 767,080 115,200 0.27 3.8 R33 8 0.0038 473,785 95,040 0.31 2.3 R33 8 0.0040 496,346 385,200 0.60 2.2 R34 18 0.0044 1,586,149 1,064,532 0.60 2.2 R34 18 0.0044 2,284,12	R42	R41		10	0.0027	740,224	249,840	0.40	2.3	490.384	33.8%
R35 10 0.0027 740,224 370,692 0.50 2.3 R36A R36A 8 0.0033 451,224 146,400 0.39 2.2 R36A R36A 8 0.0033 451,224 108,000 0.34 2.2 R35 R34 12 0.0025 1.167,463 625,092 0.53 2.2 R32 R32 8 0.0045 1.167,463 641,412 0.44 2.2 R38 0.0014 1.586,149 641,412 0.44 2.2 R34 8 0.0038 767,080 115,200 0.44 2.3 R33 8 0.0038 767,080 115,200 0.40 4.3 R33 8 0.0040 496,346 385,200 0.67 2.4 R34 15 0.0040 496,346 385,200 0.67 2.2 R34 18 0.0040 2.284,123 1.101,012 0.48 2.2 R3 </td <td>R41</td> <td>R40</td> <td></td> <td>10</td> <td>0.0027</td> <td>740,224</td> <td>293,040</td> <td>0.43</td> <td>2.3</td> <td>447,184</td> <td>39.6%</td>	R41	R40		10	0.0027	740,224	293,040	0.43	2.3	447,184	39.6%
R36A 8 0.0033 451.224 146,400 0.39 2.2 R36A 8 0.0033 451,224 108,000 0.34 2.2 R35 10 0.0025 704,975 254,400 0.42 2.2 R34 12 0.0025 1.167,463 625,092 0.53 2.5 R34 15 0.0014 1.586,149 641,412 0.44 2.2 R34 8 0.0014 1.586,149 641,412 0.44 2.2 R33 8 0.0038 767,080 174,960 0.43 2.3 R33 8 0.0127 879,886 290,160 0.40 4.3 R33 8 0.0038 473,785 95,040 0.31 2.4 R31 15 0.0040 436,346 385,200 0.67 2.4 R30 18 0.0040 2.284,123 1,101,012 0.48 2.2 R4 21 16,0995,040 0.	R40	R35		10	0.0027	740,224	370,692	0.50	2.3	369,532	50.1%
R36A 8 0.0033 451,224 108,000 0.34 2.2 R35 10 0.0025 704,975 254,400 0.42 2.2 R34 12 0.0025 1.167,463 625,092 0.53 2.5 R34 15 0.0014 1.586,149 641,412 0.44 2.2 R38 8 0.0014 1.586,149 641,412 0.44 2.3 R38 8 0.0038 473,785 174,960 0.43 2.3 R33 8 0.00127 879,886 290,160 0.40 4.3 R34 8 0.0038 473,785 95,040 0.31 2.3 R34 8 0.0040 496,346 385,200 0.67 2.4 R34 15 0.0041 1,586,149 1,064,532 0.60 2.2 R30 18 0.0011 2,284,123 1,101,012 0.48 2.2 R3 18 0.0011 2,2	R36C	R36A		Ø	0.0033	451,224	146,400	0.39	2.2	304,824	32.4%
R35 10 0.0025 704,975 254,400 0.42 2.2 R34 12 0.0025 1,167,463 625,092 0.53 2.5 R32 15 0.0014 1,586,149 641,412 0.44 2.2 R38A 8 0.0038 473,785 174,960 0.43 2.3 R33 8 0.0038 767,080 115,200 0.27 3.8 R33 8 0.00127 879,886 290,160 0.40 4.3 R34 8 0.0038 473,785 95,040 0.31 2.3 R34 15 0.0040 496,346 385,200 0.67 2.2 R34 18 0.0014 1,586,149 1,064,532 0.60 2.2 R2 18 0.0014 2,284,123 1,101,012 0.48 2.2 R34 18 0.0011 2,284,123 1,101,012 0.48 2.2 R1A 11 0.001	R36B	R36A		ထ	0.0033	451,224	108,000	0.34	2.2	343,224	23.9%
R34 12 0.0025 1,167,463 625,092 0.53 2.5 R32 15 0.0014 1,586,149 641,412 0.44 2.2 R38A 8 0.0038 473,785 174,960 0.43 2.3 R33 8 0.0098 767,080 115,200 0.27 3.8 R33 8 0.0127 879,886 290,160 0.40 4.3 R33 8 0.0127 879,886 290,160 0.31 2.3 R34 8 0.0038 473,785 95,040 0.31 2.3 R31 15 0.0040 496,346 385,200 0.67 2.4 R30 18 0.0014 1,586,149 1,064,532 0.60 2.2 R2 18 0.0011 2,284,123 1,101,012 0.48 2.2 R2 18 0.0014 2,284,123 1,101,012 0.62 2.2 R3 10,004 22 1,8	R36A	R35		10	0.0025	704,975	254,400	0.42	2.2	450,575	36.1%
R32 15 0.0014 1,586,149 641,412 0.44 2.2 R38A 8 0.0038 473,785 174,960 0.43 2.3 R38A 8 0.0098 767,080 115,200 0.27 3.8 R33 8 0.0127 879,886 290,160 0.40 4.3 R33 8 0.0127 879,886 290,160 0.31 2.3 R34 8 0.0038 473,785 95,040 0.31 2.3 R31 15 0.0040 496,346 385,200 0.67 2.4 R30 18 0.0014 1.586,149 1.064,532 0.60 2.2 R2 18 0.0011 2,284,123 1,101,012 0.48 2.2 R2 18 0.0011 2,284,123 1,101,012 0.48 2.2 R1A PEPP PLAN 21 0.0046 4954,170 0.43 2.2	R35	R34		12	0.0025	1,167,463	625,092	0.53	2.5	542,371	53.5%
R38A 8 0.0038 473,785 174,960 0.43 2.3 R38A 8 0.0098 767,080 115,200 0.27 3.8 R33 8 0.0127 879,886 290,160 0.40 4.3 R33 8 0.0127 879,886 290,160 0.40 4.3 R34 8 0.0038 473,785 95,040 0.31 2.3 R31 15 0.0040 496,346 385,200 0.67 2.4 R30 18 0.0014 1.586,149 1.064,532 0.60 2.2 R2 18 0.0011 2,284,123 1,101,012 0.48 2.2 R1A 21 0.0046 6,0046 6,0044 7.407,124 4,054,170 0.43 7.7	R34	R32		15	0.0014	1,586,149	641,412	0.44	2.2	944,737	40.4%
R38A 8 0.0098 767,080 115,200 0.27 3.8 R33 8 0.0127 879,886 290,160 0.40 4.3 R33 8 0.0127 873,785 95,040 0.31 2.3 R32 8 0.0040 496,346 385,200 0.67 2.4 R31 15 0.0014 1.586,149 1.064,532 0.60 2.2 R30 18 0.0011 2,284,123 1,101,012 0.48 2.2 R1A 21 0.0046 6,00395,087 4,954,170 0.62 5.0 R1A PEP PILAN 21 0.0046 73,407,124 4,054,170 0.42 7.7	R39	R38A		&	0.0038	473,785	174,960	0.43	2.3	298,825	36.9%
R33 8 0.0127 679,886 290,160 0.40 4.3 R32 8 0.0038 473,785 95,040 0.31 2.3 R31 15 0.0040 496,346 385,200 0.67 2.4 R31 15 0.0014 1.586,149 1.064,532 0.60 2.2 R30 18 0.0011 2.284,123 1.101,012 0.48 2.2 R1 21 0.0014 2.284,123 1.101,012 0.48 2.2 R1 21 0.0046 6.0046 6.0046 7.407,124 4.054,170 0.05 5.0	R38B	R38A		∞	0.0098	767,080	115,200	0.27	3.8	651,880	15.0%
R33 8 0.0038 473,785 95,040 0.31 2.3 R32 8 0.0040 496,346 385,200 0.67 2.4 R31 15 0.0014 1.586,149 1.064,532 0.60 2.2 R30 18 0.0011 2,284,123 1.101,012 0.48 2.2 R1A 21 0.0011 2,284,123 1.101,012 0.48 2.2 R1A 21 0.0046 6,0995,087 4,954,176 0.62 5.0 R1 24 0.0046 73,407,124 4,054,176 0.43 7.7	R38A	R33		8	0.0127	879,886	290,160	0.40	4.3	589,726	33.0%
R32 8 0.0040 496,346 385,200 0.67 2.4 R31 15 0.0014 1,586,149 1,064,532 0.60 2.2 R30 18 0.0011 2,284,123 1,101,012 0.48 2.2 R1A 18 0.0011 2,284,123 1,101,012 0.48 2.2 R1A 21 0.0046 6,0995,087 4,954,176 0.62 5.0 R1A PERPITAN 24 0.0046 73,407,124 4,054,170 0.43 7.7	R37	R33		æ	0.0038	473,785	95,040	0.31	2.3	378,745	20.1%
R31 15 0.0014 1.586.149 1.064,532 0.60 2.2 R30 18 0.0011 2.284,123 1.101,012 0.48 2.2 R2 18 0.0011 2.284,123 1.101,012 0.48 2.2 R1A 21 0.0046 6.995,087 4.954,176 0.62 5.0 R1A PERPITAN 24 0.0046 7.3407,124 4.054,176 0.43 7.3	R33	R32		8	0.0040	496,346	385,200	0.67	2.4		77.6%
R30 18 0.0011 2.284,123 1,101,012 0.48 2.2 R2 18 0.0011 2.284,123 1,101,012 0.48 2.2 R1A 21 0.0046 6.995,087 4,954,170 0.62 5.0 R1 PER PI AN 24 0.064 170 0.43 7.5	R32	R31		15	0.0014	1,586,149	1,064,532	09'0	2.2	521,617	67.1%
R1A R1A 0.0011 2.284.123 1,101,012 0.48 2.2 2.2 2.2 2.2 2.2 2.3 2.2 2.3 2.	R31	R30		18	0.0011	2,284,123	1,101,012	0.48	2.2	1,183,111	48.2%
R1A 24,770 0.62 5.0 5.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8	R30	R 2		18	0.0011	2,284,123	1,101,012	0.48	2.2	1,183,111	48.2%
CONTRACTOR OF THE CONTRACTOR O	-62	RIA			0.0046	6,995,087	4,954,170	🐔 📉 0.62 💸 🐣	5.0	2,040,917	~ 70.8%
	RIA	2	PER PLAN	24°	0.0081	13,197,121	4,954,170	0.42%	7.2	8,242,951	37.5%

Page 1

DU 8 & 9 Land Use, Phase 1

DU 8 & 9 at Eastmark Mesa, Arizona Project: Location:

Proj. Number: 123835.04 Proj. Engineer: Darrell Smith, P.E.

										_
	Total Avg Day	17,760	20,880	15,360	10,080	-	30.240	15.840	10.044	120,204
	Avg Day	17,760	20,880	15,360	10,080	1	30,240	15,840	10,044	120,204
	GPDC	80	80	80	80	:	80	80	54	
	Total Population	222	261	192	126	-	378	198	186	1563
	Population Density (persons/ DU or Acre)	3	က	3	က	ı	2	2	15	
	Land Use	MDR-1	MDR-1	MDR-1	MDR-1	PARK	MDR-1	MDR-1	CIVIC	
BREAKDOWN	Non-Residential Acres	2		_	:	6.8	•		12.4	19.2
	Density (DU/AC)	3.23	2.90	2.59	2.01		3.50	3.11		
ND DWELLIN	Residential Acres	22.9	30.0	24.7	20.9	**	54.0	31.8	-	184.3
PRELIMINARY LAND USE AND DWELLING UNIT	No. of DUs	74	87	64	42	:	189	99	:	555
PRELIMINARY	Parcel	8-1	8-2	8-3	8-4	8-5	9-1	9-2	6-3	DU889 Totals

1) Parcels 9-1 through 9-2 are part of a proposed Active Adult community therefore the assumption of 2 persons per dwelling unit in lieu of 3 persons per dwelling unit for the population density would produce a more accurate estimation of peak flows.

Wastewater Model, Phase 1

TABLE 7 - WASTEWATER MODEL, PHASE I CIVIL ENGINEERS * HYDROLOGISTS * LAND SURVEYORS * CONSTRUCTION MANAGERS

Project: Location: References:

DU 8 & 9 at Eastmark
Mesa, Arizona
City of Mesa 2012 Engineering and Design Standards
Arizona Administrative Code, Title 18, Chapter 9

Proj. Number: 123835.04 Proj. Engineer: Darrell Smith, P.E.

FROM Node	TO NODE	SEWER AREA(S)/PARCEL SERVED	AREA SERVED (ACRES)	UNIT FLOW (GPD/AC)	PARCEL ADF (GPD)	SEWER NODE ADF (GPD)	TOTAL ADF (GPD)	PEAKING FACTOR	PEAK WET WEATHER FLOW (GPD)
		ream Wastewater Flo 7-8	25.3.		29,680				
R21	R19	7-9 7-11	7.5 19.1	814 1,340	6.102 25,600	61,382	61,382	3.0	184,146
		7-ë	26.8	699	18,720			ni i i	
R24,2	R19	7-7 7-10	31.4 25.4	795 1,090	24,960 27,680	95,280	95,200	30	285,600
R19	R22	7-12	19.6	1,216	28,840		156.582	30	469:746
(8.7	2.00	740	20.1	1.043	20:960		130,002	- 26 XTXXXX	702,130
R22	R23	7-147 7-15	17.3 18.1	1,757 1,189	30,400 21,520	112.940	269,522	3.0	808,566
		7-23	20.6	1,760	35,200				10 P
		7/24 7/16	6.0 25.4	810 945	4,860 24,000				
R23.	R26	7:17	23.4	800	18,720	58,920	328,442	3.0	985,326
	l, 45.	7-22 7-27	20.0 35.3	810 _	16,200	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
	14.2	7-18	28.9	706 937	20,400				
R26	R27	7-20	25,1 20.1	955	23,520 19,200	92,430	420,872	3,0	¥1,262,616
	No.	7-21 7-25	22.1 2.5	923 821	20,400 . 2,052				
		7-26	5.5	1,247	6.858				
	888 9 6 6 5 6	OFFUPSTREAM ⁽¹⁾ FIRST SOLAR	1,473	707	1.041.710			7.888.538	
*R46	R45	PHASE I ADMIN	15	3,200	48,002	1.145.632	1,145,632	25	2,864,080
		7-1 7-4	21.0 34.8	926 679	19,440 20,160				jaki.
		7.5	26.9	607	18,320				
R45	R27	7-2 7-3	20.8 33.1	4,058 790	22,000 26,160	48,160	1.193,792	2.5	2,984,480
R27 R42	R12				**************************************	Han nigar	1,614,664	2.5 2.5	4,036,660 4,036,660
%R11	R2					-	1,614,664	2.5	4,036,660
R41	R40	9-2	31.8	498	15,840	 00.004	-	3.0	77.050
R40	R35	9-3	12,4	810	10,044	25,884	25,884	3.0	77,652
R35 R34	R34	18% of 9-1	9.7	561	 5,440	5,440	25,884 31,324	3.0	77,652 93,972
1,00		42% of 8-3	10.4	623	6,480	VI			
R39	R38A	8-5 67% of 8-4	6.8 14.0	480	6,720	18,720	18,720	3.0	56,160
		26% of 8-2	7.8	708	5,520				
R38B	R38A	58% of 8-3 56% of 8-2	14.3 16.8	621 700	8,880 11,760	38,400	38,400	3.0	115,200
		8-1	22.9	776	17,760	·			474.000
R38A	R33	33% of 8-4	- 6.9	487	3,360		57,120	3.0	171,360
R37	R33	18% of 8-2	5.4	667	3,600	6,960	6,960	3.0	20,880
R33 R32	R32 R31	42% of 9-1	22.7	557	12,640	12,640	64,080 108,044	3.0	324,132
R31	R30	40'% of 9-1	21.6	563	12,160	12,160	120,204	3.0	360,612
R30 R2	R1A		 -			-	120,204 1,734,868	3.0 2.5	360,612 4,337,170
R1A	Rí					-	1,734,868	2.5	4,337,170
R1	RAY ROAD SEWER		-	1	-1		1,734,868	2.5	4,337,170
otał DU 8 & 9 Pi ay Road Sewer			203.5		120,204	120,204	120,204		360,612
otal Eastmark F ewer	low to Ray Road		2279.0		693,158	693,158	693,158		2,079,474
otal Flow to Ray	y Road Outfall at		2273.0		1,734,868	1,734,868	1,734,868		4,337,170

Calculated Pipe Capacities, Phase 1

Project: Location: References:

TABLE 8 - CALCULATED PIPE CAPACITIES, PHASE 1

CIVIL ENGINEERS * HYDROLOGISTS * LAND SURVEYORS * CONSTRUCTION MANAGERS

Proj. Number: 123835.04 Proj. Engineer: Darrell Smith, P.E.

DU 8 & 9 at Eastmark Mesa, Arizona ADEQ Bulletin No. 11 City of Mesa 2012 Engineering and Design Standards

MODELED PIPE SLOPE
(FT / FT)
0.0045
0.0050
0.0045
0.0020
0.0020
0.0020
0.0094
0.0070
0.0029
0.0030
0.0030
0.0027
0.0027
0.0025
0.0014
0.0038
0.0098
0.0127
0.0038
0.0040
0.0014
0.0011
0.0011
0.0046
0.0081

Page 1

PLATE 1

Vicinity Map

EASTMARK MESA, ARIZONA

OR RECORDING

PLATE 2

Master Sewer Exhibit, Full Build-Out Condition

R:\Mesa Proving Grounds\2012\23835.04\Project Support\Reports\DU 8 & 9 Master WasterHater Update\Exhibits\ 3835_04-Plate 2 - Master Sewer Exhibit - FBO.dwg - Jan 14,2014 2:59pm

PLATE 3

Master Sewer Exhibit, Phase 1

