MASTER DRAINAGE REPORT FOR DEVELOPMENT UNIT 3 SOUTH AT EASTMARK

December 16, 2013 WP# 113697.08

Submitted to:

City of Mesa

55 North Center Street

P.O. Box 1466

Mesa, Arizona 85211-1466 Phone: (480) 644-3258

Prepared for:

DMB Mesa Proving Grounds, LLC

7600 East Doubletree Ranch Road

Suite 300

Scottsdale, Arizona 85258 Phone: (480) 367-7000

Prepared by:

Wood, Patel & Associates, Inc.

2220 South Country Club Drive

Suite 101

Mesa, Arizona 85210 Phone: (480) 834-3300

Fax: (602) 335-8580

TABLE OF CONTENTS

1.0	INTR		TON	
	1.1		al Background and Project Location	
	1.2		of the DU-3 South Master Drainage Report	
2.0	DESC	CRIPTIC	ON OF STUDY AREA	3
	2.1	Existin	ng Soil Conditions	3
	2.2		Il Seasons	
	2.3	FEMA	Flood Insurance Rate Map (FIRM)	3
	2.4	Section	n 404 Jurisdictional Areas	4
	2.5	Master	Drainage Report Update for Eastmark	4
3.0	EXIS	TING D	RAINAGE CONDITION	6
	3.1	Existin	ng Drainage Plan	6
		3.1.1	Northern Boundary	6
		3.1.2	Eastern Boundary	6
		3.1.3	Western Boundary	6
		3.1.4	Southern Boundary	7
4.0	PROF	POSED I	DRAINAGE CONDITION	8
	4.1	Propos	sed Drainage Plan	8
	4.2	Propos	ed Condition Hydrology	8
	4.3	Propos	ed Hydraulics	9
		4.3.1	Street Hydraulics	9
	4.4	Retent	ion	
		4.4.1	Retention Storage	9
		4.4.2	Stormwater Quality	10
	4.5	Mainte	enance	10
5.0	CON	CLUSIO		11
6.0	REFE	RENCE	S DARNELL D.	12
			12-16-13/15/1	
			ARZONA USA	
			Expirac 6-30.16	
			Cxpikn-	

APPENDICES

Post Developed Data and Hydrology Appendix A

- Hydrology Proposed Condition 100-year, 24-hour HEC-1 Output
- NOAA Atlas Precipitation Data
- Post Developed HEC-1 Sub-Basin Data
- Post Developed HEC-1 Soil Data
- Post Developed HEC-1 Land Use Data
- Post Developed Onsite Retention Volume Summary

PLATES

Plate 1	Vicinity Map
Plate 2	Soils Map
Plate 3	Flood Insurance Rate Map
Plate 4	Section 404 Jurisdictional Delineation Map
Plate 5	Post Developed HEC-1 Schematic

1.0 INTRODUCTION

1.1 General Background and Project Location

Development Unit 3 South (DU-3S) is located in the southern portion of the Eastmark

development, formerly known as Mesa Proving Grounds. The proposed Development

Unit 3 South (Site) is approximately 92 acres within the 3,155-acre Eastmark master

planned community, in Mesa, Arizona. It is a Planned Community District (PCD) which

will include residential and open spaces.

This Master Drainage Report has been prepared in accordance with Wood, Patel &

Associates, Inc. (Wood/Patel's) understanding of the City of Mesa (City) and the Flood

Control District of Maricopa County (FCDMC) drainage requirements.

The Site is located within a portion of Sections 26 and 27 of Township 1 South, Range 7

East, of the Gila and Salt River Meridian. The Site is bounded by the Powerline

Floodway and Ray Road alignment to the north, Pacific Proving Grounds on the south

and west, and Inspirian Parkway and Eastmark Development Unit 8 (DU-8) to the east

(refer to the attached Plate 1 - Vicinity Map).

The Site consists of multiple automotive test tracks and undisturbed desert. The Site was

previously used by General Motors as a desert automobile testing facility. The majority

of the Site is surrounded by automotive test tracks and undisturbed desert along the

northern, western, and southern boundaries.

In addition, the Powerline Floodway Channel traverses the northern boundary of the Site,

south and parallel to the Ray Road alignment. This is a major FCDMC facility that

provides conveyance of discharge from the Powerline Flood Retarding Structures,

approximately three miles east of the Site, and drainage conveyance for stormwater

runoff for areas adjacent to the channel. Ultimately, the flow is conveyed to the East

Maricopa Floodway (EMF) west of the Site.

1

WOOD/PATEL

Master Drainage Report for Development Unit 3 South at Eastmark WP# 113697.08

1.2 Scope of the DU-3 South Master Drainage Report

The DU-3S Master Drainage Report was prepared to support the development of approximately 391 single-family residential dwelling units with open spaces. The drainage analysis is consistent with procedures and standards of the City of Mesa and the Flood Control District of Maricopa County. The proposed drainage plan provides an outline for the required major drainage facilities for storage and conveyance of stormwater runoff for the development of DU-3S at Eastmark. Updates to the Master Drainage Report may be required if significant changes are made to the land uses and assumptions utilized to prepare this report.

2.0 DESCRIPTION OF STUDY AREA

2.1 Existing Soil Conditions

According to the Natural Resources Conservation Service's Soil Survey, Eastmark is located within the Aguila-Carefree soil survey area. The majority of the surface soils onsite are classified as sandy loam, clay loam, or loam. Refer to Plate 2 – *Soils Map* and Appendix A – *Proposed Condition Data and Hydrology* for information pertaining to existing soil conditions.

2.2 Rainfall Seasons

There are two distinct rainfall seasons associated with the desert southwest corresponding to the project area. The first season occurs during the winter months, from November to March, when the area is subjected to occasional storms from the Pacific Ocean. While classified as a rainfall season, there can be long periods where there can be little or no precipitation. Generally, storms occurring during the winter rainfall season are classified as being long-duration, low-intensity storms.

The second rainfall period occurs during the summer months, from June through August, and is commonly referred to as the Monsoon Season. During this season, Arizona is subjected to widespread thunderstorm activity, whose moisture supply originates both in the Gulf of Mexico and along Mexico's west coast. These thunderstorms are typically classified as being short-duration, high-intensity storms, with extreme variability per location.

2.3 FEMA Flood Insurance Rate Map (FIRM)

The Maricopa County, Arizona and Incorporated Areas Flood Insurance Rate Map (FIRM) Panel Number 04013C2760L, dated October 16, 2013, indicates that the western edge of the Site, approximately 39 acres, is within Zone "X" Shaded.

Zone "X" Shaded is defined by FEMA as follows:

3

"Areas of 0.2% annual chance flood: areas of 1% annual chance flood with average depths of less than 1 foot or with drainage areas less than 1 square mile; and areas protected by levees from 1% annual chance flood."

Panel Number 04013C2760L also indicates area beyond the eastern map boundary is within Zone "D". The FEMA website indicates this area is within the Maricopa County, Arizona and Incorporated Areas Flood Insurance Rate Map (FIRM) Panel Number 04013C2780L. The FEMA website shows the panel as not printed and does not indicate a flood zone designation. Based on the Zone "D" markings on Panel Number 04013C2760L, and previously-mapped Panel Number 04013CIND0A, dated September 30, 2005, portions of Eastmark within Panel Number 04013C2780L, approximately 53 acres, is believed to be within a FEMA Zone "D".

Zone "D" is defined by FEMA as follows:

"Areas in which flood hazards are undetermined."

Refer to Plate 3 – *Flood Insurance Rate Map* for an illustration.

2.4 Section 404 Jurisdictional Areas

A Jurisdictional Delineation has been completed by the U.S. Army Corps of Engineers (Corps) for Eastmark. A portion of the Powerline Floodway Channel and a small wash have been designated as Jurisdictional, and lie north of the DU-3S boundary. Refer to Plate 4 – Section 404 Jurisdictional Delineation Map for the locations of Jurisdictional areas.

Proposed disturbances to the Jurisdictional areas are required to be permitted with the Corps. A Section 404 Individual Permit will be required for disturbance during development, with conditions that must be adhered to.

2.5 Master Drainage Report Update for Eastmark

The *Master Drainage Report Update for Eastmark*, dated December 17, 2013, by Wood, Patel and Associates, Inc., has set the drainage criteria for the Site. The update is being submitted for review and approval, concurrent with this DU Master Plan. The report includes a pre-developed condition HEC-1 model (MGPEX.DAT), as well as a full build-out model (EMDU3S.DAT), which are modified versions of the current flood control district area drainage master plan models. The East Mesa Area Drainage Master Plan (ADMP), prepared in 1998 by Dibble & Associates, Inc. and Hoskin Ryan Consultants, Inc., is a regional drainage study prepared for the FCDMC.

Eastmark is located in the eastern portion of the study, which is bound by the Flood Retarding Structure (FRS) in Pinal County to the east and the EMF to the west. In general, the area drains northeast to southwest, and outlets into the EMF. The ADMP sets the regional drainage constraints for facilities within the study area of Eastmark. The full build-out model was utilized to verify the development of Eastmark does not negatively impact any drainage infrastructure downstream.

3.0 EXISTING DRAINAGE CONDITION

3.1 Existing Drainage Plan

The Site generally slopes in a southwesterly direction at approximately 0.5 to 1 percent. The peak elevation within the Site is 1419 feet mean sea level (MSL), located near the intersection of Inspirian Parkway and the Powerline Floodway. The lowest elevation within the Site is approximately 1,392 feet MSL, located at the northwest tip of the Site. The Site is covered with typical Sonoran Desert vegetation, including mesquite trees, saguaro cactus, creosote, etc.

The existing Site is made up of one sub-basin which drains northeast to southwest into the Pacific Proving Grounds site, and has been modeled accordingly within the current 100-year, 24-hour FCDMC model and the Master Drainage Report model. The outfall locations along the southern and western boundaries are at existing washes. Proposed 100-year, 2-hour retention will decrease the runoff volume and peak flow produced on the Site.

3.1.1 Northern Boundary

The northern boundary of DU-3S is bound by the Powerline Floodway. The floodway provides a low-flow outlet to FRS dams upstream of the Site, as well as stormwater conveyance for areas adjacent to the channel. The channel precludes stormwater generated to the north from entering the Site.

3.1.2 Eastern Boundary

DU-8 lies east of the Site and is currently in the design review process with the City of Mesa. DU-8 will provide retention for the 100-year, 2-hour storm event. In the event runoff exceeds the retention capacity within DU-8, the Site will outfall to Inspirian Road and be conveyed south and west to the Pacific Proving Grounds.

3.1.3 Western Boundary

The western boundary is not impacted by any offsite flows entering the Site. A discharge point to Pacific Proving Grounds is located near the middle of the diagonal portion of the common boundary.

3.1.4 Southern Boundary

There are no offsite impacts crossing the southern boundary. Several existing washes flow across the boundary from Eastmark to Pacific Proving Grounds. In the existing condition, peak flow leaving the Site is approximately 90 cubic feet per second (cfs).

4.0 PROPOSED DRAINAGE CONDITION

4.1 Proposed Drainage Plan

The drainage concept for DU-3S is to route offsite flows around the Site and direct onsite

stormwater runoff to retention basins for storage. Offsite runoff north of the Site will be

collected and diverted within the Powerline Floodway, preventing any stormwater

produced to the north from impacting the Site.

Onsite runoff produced onsite will utilize roadways for overland flow conveyance to

localized retention basins. Where street capacities are exceeded, vertical curb and/or

underground storm drain systems or roadside channels may be utilized to convey the

excess runoff volume. Refer to Plate 5 - Post Developed HEC-1 Schematic for

watershed delineations and locations.

Retention basins will be sized to retain the runoff volume from a 100-year, 2-hour storm

event in accordance with jurisdictional requirements. Emergency overflow routes must

be provided in the event that retention basin capacities are exceeded due to a storm larger

than the design event or back-to-back storms. Retention basins will be designed to drain

retained runoff within 36 hours after a storm event. Land uses depicted in the hydrologic

models are proposed and subject to change.

In all locations, lowest floor elevations shall be set a minimum of 1 foot above the

emergency overflow elevation, or any 100-year water surface elevation adjacent the Site,

whichever is greater.

4.2 Proposed Condition Hydrology

A proposed condition HEC-1 model (EMDU3S.DAT) was created to assess the impact of

the developed DU-3S to the downstream drainage infrastructure. The model was created

based upon the most current post developed condition model. The watershed within the

Eastmark DU-3S was modeled with medium density residential and active open space

land uses per the FCDMC's DDMSW program.

8

Retention for DU-3S was calculated, based on the previously-mentioned land uses, and

applied to the proposed condition HEC-1 model. Based on point precipitation frequency

WOOD/PATEL

Master Drainage Report for Development Unit 3 South at Eastmark WP# 113697.08 estimates from NOAA Atlas 14, the 100-year, 2-hour precipitation is 2.19 inches. Flows in excess of the 100-year, 2-hour basin capacities within DU-3S will discharge to historic outfall locations. The following table provides a summary of 100-year, 24-hour discharges for the existing and proposed conditions, which indicates decreased peak discharges leaving the Site.

EXISTING	CONDITION	PROPOSED CONDITION				
Location ID	Discharge	Location ID	Discharge			
C79A1	90 cfs	RET17	5 cfs			

4.3 Proposed Hydraulics

4.3.1 Street Hydraulics

Arterials and major collectors shall be designed to convey the peak flows generated by a 10-year peak storm within the roadway infrastructure, with a spread limited to 1 traffic lane in each direction. All other public roadways shall be designed to convey the peak flows generated by a 10-year peak storm between the curbs. All roadways shall be designed to convey the 100-year storm within the right-of-way and adjacent parkway. Where the peak flows exceed the capacity of the public street to convey the peak flows, storm drains or other drainage facilities shall be installed and sized to carry the excess flows (i.e. when the 10-year peak exceeds the spread criteria or exceeds the curb capacity of the public street, or when the right-of-way cannot convey the 100-year peak flow). Storm drain and/or channel systems will convey stormwater runoff to retention basins located throughout the Site.

4.4 Retention

4.4.1 Retention Storage

The 100-year, 2-hour required retention volume for DU-3S was estimated to be 10.1 acre-feet based on conceptual land use. If actual land uses and required retention volumes vary from this report, updates to this report may be required to analyze impacts to downstream drainage infrastructure.

Refer to *Table 4 – Proposed Condition Onsite Retention Volume Summary* in Appendix A for a detailed summary of required retention volumes. The proposed retention volume is based on a 100-year, 2-hour precipitation depth of 2.19 inches, obtained from NOAA Atlas 14 Precipitation Frequency Data. Retention basins will be required to dissipate stormwater within 36 hours.

4.4.2 Stormwater Quality

The required retention storage volume for the Site exceeds the first flush requirement of storing the first one-half inch of runoff. All runoff will have settlement time within retention basins prior to draining by percolation, drywells, release into natural watercourses, and/or release into existing storm drain systems.

4.5 Maintenance

Ongoing maintenance of the designed or recommended drainage systems will be required to preserve the design integrity and purpose of the drainage system. Failure to provide maintenance can prevent the drainage system from performing to its intended design purpose, and can result in reduced performance. Maintenance is the responsibility of private developers and owners associations for facilities on private property within all easements and private streets, except for drainage structures within public rights-of-way accepted by the City of Mesa for maintenance. Ownership and maintenance responsibilities will be associated with developments discharging to retention facilities and will be managed by the owners associations established for the Site. A regular maintenance program is required to have drainage systems perform to the level of protection or service as presented in this report.

5.0 CONCLUSIONS

Based on the analysis of the *Master Drainage Report for Development Unit 3 South at Eastmark*, the following conclusions can be made:

- 1. This Master Drainage Report for Development Unit 3 South at Eastmark is prepared in accordance with Wood, Patel & Associates, Inc.'s understanding of the drainage parameters set by the Flood Control District of Maricopa County, the City of Mesa, and the Master Drainage Report for Eastmark.
- 2. Offsite flows shall be conveyed around the Site adequately, per jurisdictional requirements. FCDMC may require a review of this *DU-3S Master Drainage Report*.
- 3. Peak flows for the proposed condition 100-year, 24-hour storm shall not negatively impact downstream drainage infrastructure.
- 4. Onsite retention shall be provided to retain runoff generated by the 100-year, 2-hour storm event for developed areas.
- 6. Flow in excess of onsite storage capacity shall outfall to emergency overflow routes.
- 7. Lowest floor elevations shall be set a minimum of 1 foot above the adjacent 100-year water surface elevation or emergency outfall water surface elevation, whichever is greater.
- 8. Drainage infrastructure will be designed in accordance with the appropriate criteria, per the City of Mesa and/or Flood Control District of Maricopa County.
- 9. Ongoing maintenance is required for all drainage systems in order to assure design performance.

6.0 REFERENCES

- 1. *Master Drainage Report for Eastmark*, Wood, Patel and Associates, Inc., December 13, 2013.
- 2. Drainage Design Manual for Maricopa, County, Arizona, Volumes 1 Hydrology, Flood Control District of Maricopa County, August 15, 2013.
- 3. Drainage Design Manual for Maricopa County, Arizona, Volume 2 Hydraulics, Flood Control District of Maricopa County, August 15, 2013.
- 4. *Drainage Policies and Standards for Maricopa County*, Arizona, Flood Control District of Maricopa County, Draft January 2013.
- 5. 2012 Engineering & Design Standards, City of Mesa, 2012.
- 6. Flood Insurance Rate Map 04013C2760L, Federal Emergency Management Agency (FEMA), October 16, 2013.
- 7. HEC-1 Flood Hydrograph Package, U.S. Army Corps of Engineers, June 1998.

APPENDIX A

Post Developed Data and Hydrology

Hydrology Proposed Condition 100-Year, 24-Hour HEC-1 Output * FLOOD HYDROGRAPH PACKAGE [HEC-1] *

* JUN 1998 *

* VERSION 4.1 *

* RUN DATE 12DEC13 TIME 10:29:13 *

U.S. ARMY CORPS OF ENGINEERS
HYDROLOGIC ENGINEERING CENTER
609 SECOND STREET
DAVIS, CALIFORNIA 95616
(916) 756-1104

х	х	XXXXXXX	XX	XXX		x
х	X	x	х	x		XX
X	X	x	х			X
XXX	CXXX	XXXX	X		XXXXX	X
х	X	x	х			X
х	х	x	х	х		X
Х	X	XXXXXXX	XX	XXX		XXX

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF MEC-1 KNOWN AS MEC1 (JAM 73), MEC1GS, MEC1DB, AND MEC1KW.

THE DEPINITIONS OF VARIABLES -KTIMP- AND -RTIOR- HAVE CHARGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON FM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRANT? VERSION MEM OFTIONS: DRAWBERS COUTLON SUBMERGENCE, SINGLE EVENT DRAWAGE CALCULATION, DSS:RRITE STAGE FREQUENCY, DSS:RRITE STAGE FREQUENCY, LOSS RRATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

1		HEC-1 INPUT	PAGE 1
LINE	ID.	12345678910	
1 2	ID	BUT B. ABSCHIME BAR	
3	ED ED	FILE: DO35INT.DAT	
4	ID	MODEL REVISED: 12-12-2013	
5 6	ID ID	PROJECT: DEVELOPMENT UNIT 3 SOUTH (DU-35) AT EASTMARK	
7	ID	PROJECT: DEVELOPMENT UNIT 3 SOUTH (DU-35) AT EASTMARK	
8	ID	THIS MODEL IS AN EXERPT OF THE FULL BUILD OUT MODEL. NO REFERENCE TO	
9 10	ID ID	OTHER MODELS IS REQUIRED TO RUN THIS MODEL.	
11	ID	THIS IS AN INTERIM CONDITION MODEL WHICH REFLECTS THE FLOOD CONTROL	
12	ID	DISTRICT'S FULL BUILD OUT MODEL. SINCE THERE ARE BO OFFSITE FLOWS	
13 14	ID ID	ONLY DO-35 WAS MODELED TO COMPARE PEAK FLOWS LEAVING THE SITE AGAINST THE EXISTING CONDITION FEAK FLOWS.	
15	ID	TRE ENTERING CONDITION FEAR FLORES,	
16	ID	MODEL REVISION DESCRIPTION:	
17 18	ID	THE MOST CURRENT POST-DEVELOPED MPG MODEL (EMDUSS.DAT) WAS USED AS THE	
19	ID	START TO THIS MODEL.	
20	ID		
21 22	ID	MODEL REVISED BY: WOOD, PATEL & ASSOCIATES, INC.	
23	ID	DANIEL W. MATTHEWS, P.C.	
24	ID		
25 2 6	ID ID	FILE PATH: R:\MBSA PROVING GROUNDS\2011\113697.08\PROJECT SUPPORT\REPORTS\	
27	ID	EASTMARK DU-3S DRAINAGE MASTER REPORT\HYDROLOGY\INTERIM\DU3SINT.DAT	
28	ID		
29 30	ID	***************************************	
31	ID		
32	ID	PILE: EMDU3S.DAT	
33 34	ID	MODEL REVISED: 12-11-2013	
35	ID	EODED 124 2021 12-14-1043	
36 37	ID	PROJECT: EASTMARK WASTER DRAINAGE UPDATE FOR DEVELOPMENT UNIT 3 SOUTH	
38	ID	THIS IS A POST DEVELOPED MODEL REVISION TO REPLECT PLANNED LAND USES	
39	ID	FOR DEVELOPMENT UNIT 3 SOUTH (DU-35).	
40 41	ID	MODEL REVISION DESCRIPTION:	
42	ID	NODET REALIZION DESCRIBATION:	
43	ID	THIS MODEL IS AN EXERPT OF THE HODEL PROVIDED BY THE FLOOD CONTROL	
44 45	ID	DISTRICT OF MARICOPA COUNTY (WS4-SEM.DAT). LAND USES FOR DU-3S ARE CONSISTENT WITH THE PREVIOUS MODEL (EMDUBS.DAT) THEREFORE RESULTING	
46	ID	PEAK FLOWS HAVE REMAINED THE SAME.	
47	ID		
48 49	ID	MODEL REVISED BY: WOOD, PATEL & ASSOCIATES, INC.	
50	ID	DANIEL MATTHEWS, P.S.	
51	IĐ		
52 53	10 10	FILE PATH: R:\MESA PROVING GROUNDS\2011\113697.08\PROJECT SUPPORT\REPORTS\	
54	ID	EASTMARK OVERALL DRAINAGE MASTER UPDATE/HYDROLOGY/PROPOSED/EMDU3S.DAT	
55	ID	TOO A FUTURE	na co
1		HEC-1 INPUT	PAGE 2
LINE	ID.	1	
56	ID	***************************************	
57 58	ID ID	FILE: EMDURG.DAT	
59	ID		
60	ID	MODEL REVISED: 1-22-2013	
61 62	ID ID	PROJECT: EASTMARK 646	

```
ID
ID
 THIS IS A FOST DEVELOPED MODEL REVISION TO REFLECT UPDATED PLANNING FOR DEVELOPMENT UNITS 849 (DU 849).
                        ID
ID
ID
                                      MODEL REVISION DESCRIPTION:
                                       THIS MODEL IS AN EXERPT OF THE MODEL PROVIDED BY THE FLOOD CONTROL
                                       DISTRICT OF MARICOPA COUNTY (WS4-SEM.DAT). ONSITE WATERSHEDS MERE UPDATED TO REPLECT CURRENT PLAN FOR DEVELOPMENT UNITS 8 & 9.
                        ID
ID
ID
ID
ID
ID
                                       MODEL REVISED BY:
MOOD, PATEL 4 ASSOCIATES, INC.
DARREN E. SMITH, P.E.
                        ID
ID
ID
                                       FILE PATE:
                                       R:\MESA PROVING GROUNDS\2012\123835\PROJECT SUPPORT\REPORTS\
DRAINAGE\HYDROLOGY\PROPOSED\EMDU89.DAT
                       ID
                               ***********************
                                       FILE: MPGDU7.DAT
                        ID
                        ID
                        ID
ID
                                       MODEL REVISED: 09-07-2011
                                       PROJECT: MESA PROVING GROUNDS
                       ID
                                       THIS MODEL SHOULD REPLACE WS4-SEM.DAT IN THE HEC-1 RUN SEQUENCE SPECIFIE BELOW. REFERENCING WS2-NEM.DSS IS STILL REQUIRED.
                        ID
                       ID
                                       THIS IS A POST DEVELOPED MODEL REVISION TO REFLECT UPDATED FLARNING FOR DEVELOPMENT GNIT 7 (DU7) PROVIDED BY ARIZONA LAND DESIGN ON 09/02/201 09/02/2011.
                       ID
ID
                        ID
                       IĐ
                        ID
ID
                                       MODEL REVISION DESCRIPTION:
                                       THIS MODEL IS AN EXERPT OF THE MODEL PROVIDED BY THE FLOOD CONTROL
                       ID
                                       DISTRICT OF MARICOPA COUNTY (WS4-SEM_DAT). ONSITE WATERSHEDS WERE
UPDATED TO REFLECT A GRADING FLAN PROVIDED BY LD TEAM ON 8/30/2011.
MODELING OF THE FOWERLINE FLOOWBAY HAS BEEN UPDATED TO REFLECT THE
EXISTING SECTIONS AND SLOPE PER AS-BUILT DRAWINGS ACROSS THE MPG
                       ID
ID
ID
ID
                        ID
ID
ID
                                       SITE.
                                       MODEL REVISED BY:
                                       WOOD, PATEL 4 ASSOCIATES, INC.
DANIEL W. MATTHEWS, E.I.T.
                        ID
ID
ID
                                       FILE PATH:
                        ID
                                       R:\MESA PROVING GROUNDS\2011\113697\PROJECT SUPPORT\REPORTS\
                                                                                                                                                              PAGE 3
LINE
                       DRAINAGE\HYDROLOGY\MPGDU7.DAT
 112
                        rp
                        ID
                        ID
ID
ID
                               ***********************
 114
115
116
117
119
119
                                       FILE: MPG20RT2.DAT
                        TD
                        ID
ID
                                       MODEL REVISED: 04-25-2011
                       TĐ
                                       PROJECT: MESA PROVING GROUNDS
                        ID
ID
 121
122
123
124
125
126
127
128
129
130
131
                                       THIS MODEL SHOULD REPLACE WS4-SEM.DAT IN THE HEC-1 ROW SEQUENCE SPECIFIE BELOW. REFERENCING WS2-NEW.DSS IS STILL REQUIRED.
                                       THIS IS A 100-YEAR, 2-HOUR RETENTION SCENARIO MODEL USING THE 20MSF COMMERCIAL SPACE AND 15K DU LAND PLAN PROVIDED BY SWARACK PARTNERS ON 12/12/07.
                        ID
ID
                       ID
ID
                                       MODEL REVISION DESCRIPTION:
                                       THIS MODEL IS AN EXERPT OF THE MODEL PROVIDED BY THE FLOOD CONTROL
 132
133
134
135
                       ID
ID
ID
                                       DISTRICT OF MARICOPA COUNTY [WS4-SEM.DAT]. ONSITE WATERSHEDS 01 AND 20 WERE UPDATED TO REFLECT THE INCORPORATION OF THE FIRST SOLAR SITE IN THE NORTHEAST CORNER OF DO-5. WATERSHED 20 WAS SPLIT INTO 02A AND 02B. LAND USE W
 136
137
138
149
141
142
143
144
145
147
148
149
150
151
155
155
155
155
156
157
158
159
160
160
                        ID
TD
                                       RESIDENTIAL FOR 02A.
THE FIRST SOLAR SITE RUNOFF WILL NOW BE RETAINED ENTIRELY ONSITE.
                        ID
ID
ID
ID
                                       MODEL REVISED BY:
WOOD, PATEL 4 ASSOCIATES, INC.
STEPHEN M. SCINTO, P.E.
                       1D
1D
1D
                                       R:\MESA PROVING GROUNDS\2010\103564.04\PROJECT SUPPORT\REPORTS\
DRAINAGE\HYDROLOGY\POST-DEVELOPED 100YR2HR RETENTION MODEL\
                                       MPG20RT2.DAT
                               ************************
                        ID
ID
                                       FILE: MPG20R72.DAT
                        ID
ID
ID
ID
ID
                                       MODEL REVISED: 09-16-08
                                       PROJECT: MESA PROVING GROUNDS
                                       THIS MODEL SHOULD REPLACE WS4-SEM. DAT IN THE HEC-1 RON SEQUENCE SPECIFIE BELOW. REFERENCING WS2-NEW. DSS IS STILL REQUIRED.
                       ID
ID
ID
ID
                                       THIS IS A 100-YEAR, 2-HOUR RETENTION SCENARIO MODEL USING THE 20MSF COMMERCIAL SPACE AND 15K DU LAND PLAN PROVIDED BY SWABACK PARTNERS ON 12/12/07.
```

1

```
MODEL REVISION DESCRIPTION:
                                               ID
ID
                                                                THIS MODEL IS AN EXERPT OF THE MODEL PROVIDED BY THE FLOOD CONTROL MEC-1 IMPUT
1
                                                                                                                                                                                                      PAGE 4
                    LINB
                                              ID......1......2......3,.....4......5......6.......7.......8,......9.,.....10
                                                                DISTRICT OF MARICOPA COUNTY (WS4-SEM.DAT). ONSITE WATERSHEDS 01, 02, 03, AND 06 WERE UPDATED TO REPLECT THE CURRENT GOLF COURSE CONFIGURATION.
                      166
                     167
168
169
170
171
172
173
174
175
176
                                               ID
ID
                                                                MODEL REVISED BY:
WOOD, PATEL 4 ASSOCIATES, INC.
DANIEL W. MATTHEWS, E.I.T.
                                               IĐ
IĐ
                                               ID
                                               ID
                                                                FILE PATH:
R:\MESA PROVING GROUNDS\2006\062753\PROJECT SUPPORT\HYDRO\MDR-20-15 LAND
PLAN\2ND SUBMITTAL(CON)\HYDROLOGY\MPG20RT2.DAT
                                               ID
                                               IĐ
                     ID
                                                                FILE: MPG20RT2.DAT
                                              ID
ID
                                                                MODEL REVISED: 05-15-08
                                                                PROJECT: MESA PROVING GROUNDS
                                               ID
ID
                                                                MODEL REVISION DESCRIPTION:
                                               ID
                                               ID
ID
                                                                THIS MODEL SHOULD REPLACE WS4-SEM.DAT IN THE HEC-1 ROW SEQUENCE SPECIFIE BELOW. REFERENCING WS2-NEM.DSS IS STILL REQUIRED.
                                              ID
                                                                THIS IS A 100-YEAR, 2-HOUR RETENTION SCENARIO MODEL USING THE 20MSF COMMERCIAL SPACE AND 15K DU LAND PLAN PROVIDED BY SWABACK PARTNERS ON 12/12/07.
                                               ID
ID
ID
                                              ID
ID
ID
                                                               THIS MODEL IS AN EXERPT OF THE HODEL PROVIDED BY THE FLOOD CONTROL DISTRICT OF NARICOPA COUNTY (WS4-SEM.DAT). WATERSHED 79A WAS UPDATED AS REQUESTED BY FLOOD CONTROL DISTRICT OF MARICOPA COUNTY TO REDUCE THE PERCENT IMPERIVIOUS VALUE FROM 80% TO 0% TO MATCH THE LAND USE AS MODELED WITHIN THE BAST MESA ADMP.
                                              ID
ID
ID
                                              ID
                                                                MODEL REVISED BY:
WOOD, PATEL 4 ASSOCIATES, INC.
DANIEL W. MATTHEWS, B.I.T.
                                              ID
                                              ID
ID
                                              ID
                                              ID
                                                                R:\MESA PROVING GROUNDS\2006\062753\PROJECT SUPPORT\HYDRO\MDR-20-15 LAND
PLAN\2ND SUBMITTAL\POST-DEVELOPED 190YR2HR RETENTION MODEL (MPG20RT2)\
                                              ID
                                              ID
                                                                MPG20RT2.DAT
                     211
212
213
214
                                                       ID
                                              ID
                                                                FILE: MPG20RT2.DAT
                     215
216
217
                                               ID
ID
                                                                MODEL REVISED: 01-08-08
                                              ID
                                              ID
ID
ID
                     218
219
                                                                PROJECT: MESA PROVING GROUNDS
                     220
                                                                MODEL REVISION DESCRIPTION:
1
                                                                                                   HEC-1 INPUT
                                                                                                                                                                                                      PAGE 5
                   LINE
                                              ID.....7.....9.....10
                     221
                                              ΞĐ
                     222
223
                                                               THIS MODEL SHOULD REPLACE WS4-SEM.DAT IN THE HEC-1 RUN SEQUENCE SPECIFIE BELOW. REFERENCING WS2-NEM.DSS IS STILL REQUIRED.
                     224
                                              ID
ID
ID
ID
                     225
                                                               THIS IS A 100-YEAR, 2-HOUR RETENTION SCENARIO MODEL USING THE 20MSF COMMERCIAL SPACE AND 15% DU LAND PLAN PROVIDED BY SWABACK PARTNERS ON 12/12/07.
                     226
                     228
                     229
230
                                              ID
ID
                                                               THIS MODEL IS AN EXERPT OF THE MODEL PROVIDED BY THE PLOOD CONTROL DISTRICT OF MARICOFA COUNTY (MS4-SEM.DAT). WATERSHEDS 68A, 68B, 70A, 70B, 71, 73B, 73C, 74B, 74C, 75, 77B, 77C, 78B, 78C, AND 79A HAVE ALL BEEN UPDATED TO REFLECT CURRENT MATERSHED DELIMENTIONS, NEW DEVELOPMENT, CORRENT RETENTION, AND FLOOD ROUTING. BASIN 75 HAS BEEN UPDATED TO REFLECT PLANNED DEVELOPMENT FOR THE MESA PROVING GROUNDS SITE.
                     231
                                              232
                     233
234
235
                     236
                     237
238
239
                                                                MODEL REVISED BY:
                                                                WOOD, PATEL & ASSOCIATES, INC.
DANIEL W. MATTHERS, E.I.T.
                     240
241
242
243
244
245
246
247
                                              ID
ID
                                              ÍD
                                             ID
ID
                                                               R:\MSSA PROVING GROUNDS\2006\062753\PROJECT SUPPORT\HYDRO\MDR-20-15 LAND
PLAN\HYDROLOGY\POST-DEVELOPED 100YR2HR RETENTION MODEL (MPG20RT2)\
MPG20RT2.DAT
                                              ID
                                              ID
                     248
249
250
                                                       ID
                                                        ID Kirkham Michael:
Last Revised Date: 1/22/03
Filename: WS4-SEM.DAT
                     251
252
                                             ID
                     253
                                              ID
ID
                     254
                     255
                                             ID
ID
                                                        Comments Dated 1/22/03 (CJ)
                                                        This model should be used ONLY for the Rittenhouse and Chandler Heights Basin Design Project - Final Design Analyses.
                     257
                                              ΙĐ
```

```
260
261
262
                                                             This model is one of several models that represent the EMF watershed. This model covers the Southeast Mesa Area and should reference as a DSS
                                                              the watershed model for the Northeast Mesa Area (Filename WS2-NEM.DAT).
                       263
264
                                                               This model is necessary to determine the input hydrographs for the
                                                             Rittenhouse Basin Design MBC-MAS Unsteady State analysis. To develop
the necessary input hydrographs the following models should be run in order.
Because the files utilize a TAPE21 file to export import hydrographs
between models, prior to running the FIRST model (MSI-MMM.DAT) any existing
TAPE21 file in the directory should be deleted. The run procedure order is:
                       265
                                                  ID
ID
ID
                       266
                       267
268
                       269
                                                  ĮĐ
                       270
                                                                       1) WS1-NWM.DAT
2) WS2-NEM.DAT
3) WS3-QCSW.DAT
                                                   ID
                       273
                                                  ID
                        274
                                                                                                      (referencing WS2-NEM.DSS for the DSS file)
1
                                                                                                            HEC-1 INPOT
                                                                                                                                                                                                                         PAGE 6
                     LINE
                                                  ID......1.....2.....3.....4......5......6......7.....8......9......10
                                                             The necessary input hydrographs for the Rittenhouse Easin analysis are determined in RT1-BASE. In that output file, the hydrograph at RMFLD1 should be exported and used as the input hydrograph at the EMF Reach 4 Cross Section 17.082. And the hydrograph at RITTEN should be exported and used as the input hydrograph for the Rittenhouse Main Channel at Cross Section 820.00
                       277
278
279
                       280
                                                  ID
                        281
                       283
284
                                                   ID
                                                  ID
                       285
286
287
                                                   ID
ID
                                                              **** NOTE BY PRIMATECH ENGINEERS:
**** DATE: 06/12/2001
                                                  ID
                        288
                                                              **** THE NEW FILE NAME IS: SEBTALT2.DAT

**** THE FILE WAS RENAMED AS <<RIFFALT2.DAT>> FOR THE EAST MARICOPA

**** FLOODMAY CAPACITY MITIGATION PROJECT, BY FLOOD CONTROL DISTRICT OF

**** MARICOPA COUNTY.

****
                       289
290
291
                                                  IĐ
                       292
293
294
295
                                                              *** THE FILE WAS RENAMED <<RTBTAIT3.DAT>> AND OPDATED USING GREEN AND
*** AMPT FUTURE CONDITIONS FOR BASINS 258 TO 268.
                                                   ΙD
                                                  TD
                       296
297
                                                  ÎD
ID
                                                                THIS MODEL WAS ORIGINALLY MIDDOUT. DAT
                       298
                                                   ΙD
                                                               IT HAS BEEN MODIFIED BY CPE (7/2000)
FOR ALTERNATIVE 2 FOR THE EAST MARICOPA FLOOMRY
CAPACITY MITIGATION AND MOLITI-USE CORRIDOR STUDY
TO ROUTE BOTH THE POWERLINE FLOOMRY
                       299
                                                   ĪΒ
                       300
301
                                                   ID
ID
                        302
                                                  ID
                       303
304
305
                                                   ID
ID
                                                                AND THE SANTAN FREEWAY CHANNEL INTO THE RAY BASIN PRIOR THEIR OUTFALL
                                                   ID
                       306
                                                  ID
                       307
308
309
310
                                                                         Model files changed by Collins/Pina Engineering
to reflect multi-use design concepts (recreation
and environment) proposed throughout the entire
EMF Corridor. July 2000
                                                  ΞĐ
                                                   ĪΒ
                       311
312
                                                   ΙD
                       313
                                                   ΤD
                       314
                                                               VERSION 8.06 CPE 7/31/00
                       315
                                                         ***************
                       316
317
                                                  ID
                       318
                                                         FILENAME: MIDDOUT.DAT
                        320
                       321
                       322
323
                                                  ID
ID
                                                           ALL CIP INFRASTRUCTURE IS IN PLACE, FUTURE CONDITIONS LANDUSE IS IN PLACE FLOW 1S ROUTED UP ELLSWORTH ROAD IN A EARTH LINED CHANNEL
                       324
                                                  ID
                       325
326
327
328
                                                            PRODUCED BY DIBBLE AND ASSOCIATES AND HOSRIN ENGINEERING CONSULTANTS.
                                                          PRODUCED BY DIDDLE AND ACCURATE PRODUCED BY DIDLE AND ACCURATE PRODUCED BY SZ (Rood/Patel) From Final7.dat - new 2-V & Sideweir Revised - Jan. 2000 by SZ (Rood/Patel) from Final6.dat - 60% review comments Revised - Dec. 1999 by SZ (Rood/Fatel) from Final5.dat

HEC-1 INPUT
                                                  ΙĐ
                       329
330
1
                                                                                                                                                                                                                        PAGE 7
                     LINE
                                                  ID.....1.....2.....3.....4.....5.....6......7.....8.....9......10
                                                           Revised - Dec. 1999 by SZ (Wood/Patel) from Final4.dat
Revised - Nov. 1999 by SZ (Wood/Fatel) from Final3.dat
Revised - June 1999 by SZ (Wood/Fatel) for Final Model from Optl.dat.
Revised - May 1999 by SZ (Wood/Patel) for Option 1, Based on Model SDIB.DAT
REVISED - MAY, 1999 BY VAS TO INCORPORATE INCREASE OF SUBBASIN RETENTION AND
REVISIONS TO THE REGIONAL DETENTION BASIN STORAGE
REVISED - FEB, 1999 BY VALERIB SWICK, PCD OF MARICOFA COUNTY
REVISED - MAY, 1998 BY DAA
                       331
                       332
333
334
                       335
                                                  TD
                       336
                       338
                       339
                       340
341
342
343
                                                  ĪD
                                                           REVISED BY VALERIE SWICK, PEB. 26, 1998
                                                           FLOWS FROM DETENTION BASIN LOCATED AT NE CORNER OF ELLIOT AND ELLSWORTH ROADS
IS ROUTED TO THE SOUTHWEST BY SIPHON DRAW TO SUBBASIN 70A. FROM THERE THEY
MILL BE ROOTED BY A CHANNEL TO THE EMF. FLOWS FROM SUBBASINS ADJACENT TO
SANTAN FREENAY ALIONMENT WILL BE ROUTED SOUTH TO SUBBASIN 70A WHERE THEY WILL
BE COMBINED WITH FLOW IN SIPHON DRAW.
                                                  ID
                       346
                                                  ΙĐ
                       347
348
349
350
                                                           EAST MESA AREA DRAINAGE MASTER PLAN
AREA SOUTH OF SUPERSTITION (U.S. HWY 60)
                                                  IĐ
                                                  ID
                                                            AUGUST 1997
                       351
352
                                                            SOUTHEAST MESA HIGH RESOLUTION MODEL
                                                            353
```

```
SUBBASINS 75, 79A, 79B, 78E, LANDUSES WERE NOT
CHANGED BECAUSE IT WAS FELT THAT THEIR FUTURE CONDITIONS LANDUSES WOULD BE
                           ID
                                    CHANGED ECCAUSE IT WAS FRIT THAT THEIR FOTURE CONDITIONS LANDUSES WOULD BE SIMILAR TO THE EXISTING CONDITIONS LANDUSES.

RETENTION VOLUMES WILL ALSO NOT BE UTILIZED FOR SUBBASING 75, 79A, 79B, 78B SOME QUEEN CREEK SUBBASING WILL ALSO NOT HAVE RETENTION VOLUMES, EITHER BECAUSE THEY LIE IN PINAL COUNTY AND WE DONT KNOW PINAL COUNTIES FLANS OR THEY LIE IN THE SANTAN MOUNTAINS AND WON'T GET DEVELOPED WILLIAMS GATERRY AIRPORT (SUBBASINS 80A, 80B, 81A, AND 81B) ARE MODELED AS FUTURE CONDITIONS AND HAVE RETENTION VOLUMES FOR THE 100YR 2HR STORM
                           TB
                           ID
                           ID
                           ID
                                    FILENAME: SDIBS.DAT
                                    THIS MODEL REPRESENTS THE FUTURE CONDITION OF THE WATERSHED.
                           ID
                                    fotal drainage area is approximately 213 sq. mi. This model uses a \kappa_0 value of 0.09 for desert land use due to sheet flow
                           ΪD
                           ID
ID
ID
                                    100-YEAR 24-HOUR FREQUENCY
AREAL REDUCTIONS FROM FCD HYDROLOGY MANUAL
THIS MODEL INCLUDES INFLOW FROM MORTH OF THE SUPERSTITION FREEWAY
                           ÍD
ID
                           ID
                           ID
                                    AND EAST OF THE CAP
                           ID
ID
                                    DATA FROM THE QUEEN CREEK ADMS HAS BEEN ADDED TO CALCULATE FLOWS INTO THE EMF. MUSKINGUM ROUTING NSTEPS WERE ADJUSTED TO BE WITHIN THE SUGGESTED RANGE.
                           ID
ID
                           ÎD
ID
                                    METHODOLOGY
                                    THE US CORPS OF ENGINEERS FLOOD HYDROLOGY MODEL HEC-1 DATED SEP1990 VER 4.0
                           ID
  384
385
                                    SCS TYPE II RAINFALL DISTRIBUTION
S-GRAPH HYDROGRAPH
                                                                                HEC-1 INPUT
                                                                                                                                                                                    PAGE 8
LINE
                           TD..
                                   GREEN AND ANPT INFILTRATION EQUATION USED FOR CALCULATING LOSSES
 NORMAL DEETH STORAGE CHANNEL ROUTING
APPROXIMATE DIRECTION, LOCATION, AND LENGTH OF THE WASHES HAVE BEEN
EVALUATED BASED ON FIELD INVESTIGATION, USGS MAPS, LANDIS AERTAL SURVEYS
                           ID
ID
                                    DATED 1994
                           ID
ID
                                   THE NOAR TECHNICAL MEMORANDUM ROAR ATLAS 2 DEPTH AREA RATIOS
                                   ORIGINAL STUDY PERFORMED BY LISA C. YOUNG AND AFSKIN AHOURAIXAN, UPDATED BY DAVID DEGERMESS (OCT-DEC, 1996). REVIEWED BY VALERIE A. SWICK AND ANIR MOTAMEDI OF THE FLOOD CONTROL DISTRICT HYDROLOGY BRANCE BROINGERING DIVISION, FLOOD CONTROL DISTRICT OF MARICOPA COUNTY, DECEMBER - JULY 1995.
                           ΙD
                           ID
ID
ID
                                    ASSUMED VELOCITY OF 1 FT/SEC FOR SHEET FLOW, 2-3 FT/SEC FOR WASH/MATURAL CHANNEL, 3 FT/SEC FOR ROAD AND GRASS CHARNEL, 10FT/SEC FOR CONCRETE CHANNEL
                           ID
ID
ID
                                   VELOCITIES FOR ADMP IMPROVEMENT CHANNELS FROM DIBBLE AND ASSOCIATES SUGGESTED ALTERNATIVES (JULY 1, 2997)
                           ID
ID
                                    *** THE FOLLOWING NOTE WAS ADDED BY PRIMATECH ENGINEERS ON 06-12-2001 ****
                                   NOTE: MUST USE MEBUILD. DSS AS THE DSS FILE TO IMPORT FLOWS ACROSS THE
                           ID
ID
                                    SUPERSTITION FREEWAY.
                           ID
ID
                           ID
                           ID
ID
ID
                                   NOTE: MUST USE NDIBF.DSS AS THE DSS FILE TO IMPORT FLOWS ACROSS THE SUPERSTITION FREEWAY.
                                   DDM MCUHP2 SE MESA ADMP - SOUTH OF SUPERSTITION FWY, FUTURE CONDITIONS
                           ΤD
                           *DIAGRAM
 417
418
419
420
421
422
423
424
425
426
427
428
431
432
433
433
433
433
433
433
                          15
                                     3.60
.000
.029
                                                                                                                                                        .023
.056
.100
.163
.663
                                                    .002
                                                                                                                           .048
.090
.147
.283
.825
                                                                                              ,041
.080
.133
.236
                                                                                                             .044
.085
.140
.257
                                                                                                                                                                       .060
.105
.172
.707
                                                                  ,035
                                                                                 .038
                                                                                                                                          ,052
                                                                                                                                          .095
.155
                                                                  .072
.120
.203
.776
                                      .064
                                                    .068
                                                                                 .076
                                     .110
.181
.735
                                                    .115
.191
.758
                                                                                 .126
                                                                                .218
.791
.875
.926
.962
                                                                                                             .815
                                                                                                                                          .834
                                     .856
.913
.953
.983
3.58
3.49
                                                                  .869
.922
.959
                                                                                               .881
.930
.965
                                                                                                             .887
.934
.968
                                                                                                                         .893
.938
.971
1.000
                                                                                                                                          .898
.942
                                                                                                                                                        .903
.946
                                                                                                                                                                       .908
.950
                                                    .663
.918
                                                    .956
                                                   1.0
5.0
10.0
                                     3.24
                                                    30.0
                                     3.10
3.05
                                                    60.0
90.0
                                     3.00
                                                  120.0
  438
                                                                                HEC-1 INPUT
                                                                                                                                                                                    PAGE 9
LINE
                           ID......1......2......3......4......5......6.......7......8.......9......10
                                     17 BASIN
BASIN 17
 439
440
441
442
443
444
445
                          KK
Kh
Kh
                                     THE FOLLOWING PARAMETERS WERE PROVIDED FOR THIS BASIN
                                     L=0.92 Lca=0.47 S=19.6 KD=0.045 LAG=26.8 PHOENIX VALLEY S-GRAPH WAS USED FOR THIS BASIN
                          KH
KH
BA
LG
UI
                                   0.134
                                                   0.25
                                                                  4.10
51
                                                                                0.55
                                                                                                115
                                                                                                              171
                                                                                                                             190
                                                                                                                                           137
                                                                                                                                                         101
                                                                                                                                                                          71
```

1

1

447	10	35	25	17	5	5	5	5	0	a	0
448	ŏī	-0	0	ó	á	ň	ň	ō	ň	ŏ	ñ
149	10	ŏ	ő	ŏ	ř	ŏ	ŏ	ŏ	×	ŏ	ŏ
					Ų			-	v		
450	ΦI	0	0	0	Q.	0	٥	0	0	0	0
	*										
	*										
451	KK	RET17	DIVERT								
452	KM		100 YR 3	HR RUNOFF	WOT DME						
476			200 26 .	L HK KOBOTE	*OLONE						
	* ко										
453	DT	17RET	10.1	0.0							
454	DI	0	10000								
455	DQ	Ó	10000								
100	•	•									
456	2.7										

SCHEMATIC DIAGRAM OF STREAM NETWORK INPUT (V) ROUTING (--->) DIVERSION OR PUMP FLOW [.] CONNECTOR (<---) RETURN OF DIVERTED OR FUMPED FLOW NO. 439 17> 17RET 453 451 (***) RUNOFF ALSO COMPUTED AT THIS LOCATION U.S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER FLOOD HYDROGRAPH PACKAGE (HEC-1) VERSION 4.1 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916) 756-1104 BUN DATE 12DEC13 TIME 10:29:13 **********************

FILE: DUSSINT.DAT

MODEL REVISED: 12-12-2013

PROJECT: DEVELOPMENT UNIT 3 SOUTH [DU-35] AT EASTMARK

THIS MODEL IS AN EXERPT OF THE FULL BUILD OUT MODEL. NO REFERENCE TO OTHER MODELS IS REQUIRED TO RUN THIS MODEL.

THIS IS AN INTERIM CONDITION MODEL WHICH REFLECTS THE FLOOD CONTROL DISTRICT'S FULL BUILD OUT MODEL. SINCE THERE ARE NO OFFSITE FLORS ONLY DU-3S NAS MODELED TO COMPARE PEAK FLORS LEAVING THE SITE AGAINST THE EXISTING CONDITION PEAK FLOWS.

MODEL REVISION DESCRIPTION:

THE MOST CURRENT POST-DEVELOPED MPG MODEL (EMPTISS.DAT) WAS USED AS THE START TO THIS MODEL.

MODEL REVISED BY: WOOD, PATEL & ASSOCIATES, INC. DANIEL W. MATTHEWS, P.E.

FILE FATH: R:\MBSA PROVING GROUNDS\2011\113697.08\PROJECT SUPPORT\REPORTS\ SASTMARK DU-38 DRAIMAGE MASTER REPORT\HYDROLOGY\INTERIM\DU3SINT.DAI

FILE: EMDUSS.DAT

MODEL REVISED: 12-11-2013

PROJECT: EASTMARK MASTER DRAINAGE UPDATE FOR DEVELOPMENT UNIT 3 SOUTH

THIS IS A POST DEVELOPED MODEL REVISION TO REFLECT PLANNED LAND USES FOR DEVELOPMENT UNIT 3 SCOTH (DU-3S).

MODEL REVISION DESCRIPTION:

THIS MODEL IS AN EXERPT OF THE MODEL PROVIDED BY THE FLOOD CONTROL DISTRICT OF MARICOPA COUNTY (WS4-SEM.DAT). LAND USES FOR DU-3S ARE CORSISTENT WITH THE PREVIOUS MODEL (EMDU69.DAT) THEREFORE RESULTING PRAK FLOWS HAVE REMAINED THE SAME.

MODEL REVISED BY: WOOD, PATEL & ASSOCIATES, INC. DANIEL MATTHEWS, P.E.

FILE PATH:
R:\MESA PROVING GROUNDS\2011\113697.08\PROJECT SUPFORY\REPORTS\
EASTMARK OVERALL DRAINAGE MASTER UPDATE\HYDROLOGX\PROPOSED\ENDUSS.DAT

FILE: EMDU89.DAT

MODEL REVISED: 1-22-2013

PROJECT: EASTMARK 646

This is a fost developed model revision to reflect updated planning for development units 849 (du 849).

MODEL REVISION DESCRIPTION:

THIS MODEL IS AN EXERPT OF THE MODEL PROVIDED BY THE FLOOD CONTROL DISTRICT OF MARICOPA COUNTY (WS4-SEM.DAY). ORSITE WATERSHEDS WERE UPDATED TO REFLECT CURRENT FLAN FOR DEVELOPMENT UNITS 8 α 9.

MODEL REVISED BY: WOOD, PATEL 4 ASSOCIATES, INC. DARREN E. SMITH, P.S. FILE PATH:
R:\MSSA PROVING GROUNDS\2012\123835\PROJECT SUPPORT\REFORTS\
DRATHAGE\MYDROLOGY\PROPOSED\ENDUS9.DAT

FILE: MPGDU7.DAT

MODEL REVISED: 09-07-2011

PROJECT: MESA PROVING GROUNDS

THIS MODEL SHOULD REPLACE WS4-SEM.DAT IN THE HEC-1 RUN SEQUENCE SPECIFIE BELOW. REFERENCING WS2-NEW.DSS IS STILL REQUIRED.

THIS IS A POST DEVELOPED MODEL REVISION TO REFLECT UPDATED PLANNING FOR DEVELOPMENT UNIT 7 (DUT) PROVIDED BY ARIZONA LAND DESIGN ON 09/62/201 09/02/2011.

MODEL REVISION DESCRIPTION:

THIS MODEL IS AN EXERPT OF THE MODEL PROVIDED BY THE FLOOD CONTROL DISTRICT OF MARICORA COUNTY [RS4-SEM.DAT). ONSITE WATERSHEDS WERE UPDATED TO REFLECT A GRADING PLAN PROVIDED BY LD TEAM ON 8/30/2011. MODELING OF THE POWERLINE FLOODWAY HAS BEEN OPDATED TO REFLECT THE EXISTING SECTIONS AND SLOPE PER AS-BUILT DRAWINGS ACROSS THE MPG SITE.

MODEL REVISED BY: WOOD, PATEL & ASSOCIATES, INC. DANIEL W. MATTHEWS, E.I.T.

FILE PATH: R:\MESA PROVING GROUNDS\2011\113697\PROJECT SUPPORT\REPORTS\ DRAINAGE\HYDROLOGY\MPGDU7.DAT

FILE: MPGZORTZ.DAT

MODEL REVISED: 04-25-2011

PROJECT: MESA PROVING GROUNDS

THIS MODEL SHOULD REPLACE WS4-SEM.DAT IN THE HEC-1 RUN SEQUENCE SPECIFIE BELOW. REFERENCING WS2-NEM.DSS IS STILL REQUIRED.

THIS IS A 100-YEAR, 2-HOUR RETENTION SCENARIO MODEL USING THE 20MSF COMMERCIAL SPACE AND 15K DU LAND FLAN PROVIDED BY SWABACK PARTHERS ON 12/12/07.

MODEL REVISION DESCRIPTION:

THIS MODEL IS AN EXERPT OF THE MODEL PROVIDED BY THE FLOOD CONTROL DISTRICT OF MARICOPA COUNTY (MS4-SBM.DAT). OBSITE WATERSHEDS 01 AND 20 WERE UPDATED TO REFLECT THE INCORPORATION OF THE FIRST SOLAR SITE IN THE MORTHERST CORMER OF DU-6. WATERSHED 02 WAS SPLIT INTO 022 AND 228. LAND USE WAS CHANGED TO IMPUSTRIAL FOR 028 AND ENTIRELEY RESIDENTIAL FOR 028 THE FIRST SOLAR SITE RUNOFF WILL, NOW BE RETAINED ENTIRELY CONSIDE.

MODEL REVISED BY: WOOD, PATEL & ASSOCIATES, INC. STEPHEN M. SCINTO, P.E.

FILE FATH:
R:\MESA PROVING GROUNDS\2010\103564.04\PROJECT SUPPORT\REPORTS\
DRAINAGE\HYDROLOGY\POST-DEVELOPED 100YR2HR RETENTION MODEL\
MPG20RT2 DAT

FILE: MPG20RT2.DAT

MODEL REVISED: 09-16-08

PROJECT: MESA PROVING GROUNDS

THIS MODEL SHOULD REPLACE MS4-SEM. DAT IN THE REC-1 RON SEQUENCE SPECIFIE BELOW. REFERENCING WS2-NEM. DSS IS STILL REQUIRED.

THIS IS A 100-YEAR, 2-HOUR RETENTION SCENARIO MODEL USING THE 20MSF COMMERCIAL SPACE AND 15K DU LAND PLAN PROVIDED BY SWABACK PARTNERS ON 12/12/07.

MODEL REVISION DESCRIPTION:

THIS MODEL IS AN EXERPT OF THE MODEL PROVIDED BY THE FLOOD CONTROL DISTRICT OF MARICOPA COUNTY (W84-SEM.DAT). OBSITE WATERSHEDS 01, 02, 03, AND 06 WERE UPDATED TO REFLECT THE CURRENT GOLF COURSE CONFIGURATION.

MODEL REVISED BY: WOOD, PATEL & ASSOCIATES, INC. DANIEL W. MATTHEWS, E.I.T.

FILE PATH:
R:\MESA PROVING GROUNDS\2006\062753\PROJECT SUFFORT\HYDRO\NDR-20-15 LAND
FLAN\AND SUBMITTAL (COM)\HYDROLOGY\MFGZORT2.DAT

FILE: MPG20RT2.DAT

MODEL REVISED: 05-15-08

PROJECT: MRSA PROVING GROUNDS

MODEL REVISION DESCRIPTION:

THIS MODEL SHOULD REPLACE WS4-SEM.DAT IN THE HEC-1 RUN SEQUENCE SPECIFIE BELOW. REFERENCING WS2-NEM.DS3 IS STILL REQUIRED.

THIS IS A 100-YEAR, 2-HOUR RETENTION SCENARIO MODEL USING THE 20MSF COMMERCIAL SPACE AND 15K DU LAND PLAN PROVIDED BY SWABACK PARTNERS ON 12/12/07.

THIS MODEL IS AN EXERPT OF THE MODEL PROVIDED BY THE FLOOD CONTROL DISTRICT OF MARICOPA COUNTY (WS4-SEM.DAT). WATERSHED 79A WAS UPDATED AS REPUBSIED BY FLOOD CONTROL DISTRICT OF MARICOPA COUNTY TO REDUCE THE PERCENT INFERVIOUS VALUE FROM 80% TO 0% TO MATCH THE LAND USE AS MODELED WITHIN THE EAST MESA ADMP.

MODEL REVISED BY: WOOD, PATEL & ASSOCIATES, INC. DANIEL W. MATTHEWS, E.I.T.

FILE PATH:
R:\MESA PROVING GROUNDS\2006\062753\PROJECT SUPPORT\HYDRO\MOR-20-15 LAND
PLAN\2ND SUBMITTAL\POST-DEVELOPED 100YR2HR RETENTION MODEL (MPG20RT2)\ MPG20RT2.DAT

FILE: MPG20RT2.DAT

MODEL REVISED: 01-08-08

PROJECT: MESA PROVING GROUNDS

MODEL REVISION DESCRIPTION:

THIS MODEL SHOULD REPLACE WS4-SEH, DAT IN THE HEC-1 RUN SEQUENCE SPECIFIE BELOW. REFERENCING WS2-NEM.DSS IS STILL REQUIRED.

THIS IS A 100-YEAR, 2-HOUR RETENTION SCENARIO MODEL USING THE 20MSF COMMERCIAL SPACE AND 15K DD LAND PLAN PROVIDED BY SWABACK PARTNERS ON 12/12/07.

THIS MODEL IS AN EXERPT OF THE MODEL PROVIDED BY THE FLOOD CONTROL THIS MODEL IS AN EXEMPT OF THE MODEL PROVIDED BY THE FLOUD CONTROL DISTRICT OF MARICOPA COUNTY (MS4-SEM.DAT). WATERSKEDS 684, 688, 704, 708, 71, 738, 73C, 748, 74C, 75, 778, 77C, 738, 78C, AND 79A HAVE ALL SEEN OPDATED TO REFLECT CURRENT MATERSHED DELIMENTIONS, MEN DEVELOPMENT, CURRENT RETENTION, AND FLOOD ROUTING. BASIN 75 HAS BEEN UPDATED TO REFLECT PLANNED DEVELOPMENT FOR THE MESA PROVING GROUNDS SITE.

MODEL REVISED BY: WOOD, PATEL & ASSOCIATES, INC. DANIEL W. MATTHEWS, E.I.T.

R:\MSSA PROVING GROUNDS\2006\062753\PROJECT SUPPORT\HYDRO\MDR-20-15 LAND PLAN\HYDROLOGY\POST-DEVELOPED 100YR2HR RETENTION MODEL (MPG2URT2)\ MPG20RT2.DAT

ID Kirkham Michael: Last Revised Date: 1/22/03 Filename: WS4-SEM.DAT

Comments Dated 1/22/03 (CJ)

This model should be used ONLY for the Rittenhouse and Chandler Heights Basin Design Project - Final Design Analyses.

This model is one of several models that represent the EMS watershed. This model covers the Southeast Mesa Area and should reference as a DSS the watershed model for the Northeast Mesa Area (Filename WS2-NEW.DAT).

This model is necessary to determine the input hydrographs for the Rittenhouse Basin Design HEC-RAS Unsteady State analysis. To develop the necessary input hydrographs the following models should be run in order. Because the files utilize a IAPE21 file to export import hydrographs between models, prior to running the FIRST model (MSI-NMM.DAT) any existing TAPE21 file in the directory should be deleted. The run procedure order is:

- 1) WS1-NWM.DAT
 2) WS2-NEM.DAT
 3) WS3-QCSW.DAT
 4) WS4-SEM.DAT (referencing WS2-NEM.DSS for the DSS file)
 5) RT1-BASE.DAT

The mecessary input hydrographs for the Rittenhouse Basin analysis are determined in R21-BASE. In that output file, the hydrograph at RWELDI should be exported and used as the input hydrograph at the EMF Reach 4 Cross Section 17.082. And the hydrograph at RITTEM should be exported and used as the input hydrograph for the Rittenhouse Main Channel at Cross Section 320.00

```
**** NOTE BY PRIMATECH ENGINEERS:
**** DATE: 06/12/2001
   THIS MODEL WAS ORIGINALLY MIDDOUT.DAT
     IT HAS BEEN MODIFIED BY CFE (7/2000)
FOR ALTERNATIVE 2 FOR THE EAST WARLCOPA FLOOWAY
CAPACITY WITIGATION AND MULTI-OSE CORRIDOR STUDY
TO ROUTE BOTH THE POWERLINE FLOOWAY
      AND THE SANTAN FREEWAY CHANNEL INTO THE RAY BASIN PRIOR THEIR OUTFALL
               Model files changed by Collins/Pina Enginearing
to reflect molti-use design concepts (Recreation
and environment) proposed throughout the entire
EMF Corridor. July 2000
     VERSION 8.06 CPE 7/31/00
**************************************
 FILENAME: MIDDOUT.DAT
 ALL CIP INFRASTRUCTURE IS IN PLACE, FUTURE CONDITIONS LANDUSE IS IN PLACE FLOW IS ROUTED UP ELLSWORTH ROAD IN A EARTH LINED CHANNEL
 PRODUCED BY DIBBLE AND ASSOCIATES AND HOSKIN ENGINEERING CONSULTANTS.
PRODUCED BY DIBBLE AND ASSOCIATES AND HOSKIN ENGINEERING CONSULTANTS.
File Name: Finals.Dat
Revised - Jan. 2000 by 52 (Wood/Patel) From Final7.dat - new Z-V 4 Sideweir
Revised - Jan. 2000 by 52 (Wood/Patel) from Final5.dat - 60% review comments
Revised - Dec. 1999 by 52 (Wood/Patel) from Final5.dat
Revised - Dec. 1999 by 92 (Wood/Patel) from Final4.dat
Revised - Nov. 1999 by 92 (Wood/Patel) from Final3.dat
Revised - June 1999 by 92 (Wood/Patel) from Final3.dat
Revised - June 1999 by 92 (Wood/Patel) for Pfinal Model from Opt1.dat.
Revised - May 1999 by SZ (Wood/Patel) for Option 1. Based on Model SDIB.DAT
REVISED - MAY, 1999 BY VAS TO INCORPORATE INCREASE OF SUBBASIN RETENTION AND
REVISIONS TO THE REGIONAL DETENTION RASIN STORAGE
REVISED - FEB. 1899 BY VALERIE SWICK, FCD OF MARICOPA COUNTY
REVISED - MAY, 1998 BY DAA
 REVISED BY VALERIE SWICK, FEB. 26, 1998
 FLOWS FROM DETENTION BASIN LOCATED AT NE CORNER OF ELLIOT AND ELLSWORTH ROADS
 IS ROUTED TO THE SOUTHWEST BY SIERON DRAW TO SUBBASIM 70A. FROM THERE THEY WILL BE ROUTED BY A CHANNEL TO THE EMF. FLOWS FROM SUBBASINS ADJACENT TO SANTAM PREEMAY ALIGNMENT WILL BE ROUTED SOUTH TO SUBBASIN 70A WHERE THEY WILL BE COMBINED WITH FLOW IN SIPHON DRAW.
EAST MESA AREA DRAINAGE MASTER PLAN
AREA SOUTH OF SUPERSTITION (U.S. NWY 60)
AUGUST 1997
 SOUTHEAST MESA HIGH RESOLUTION MODEL
 *********FUTURE CONDITION MODEL OF THE WATERSHED******************
SUBBASING 75, 79A, 79B, 78L, LANDUSES WERE NOT
CHANGED BECAUSE IT WAS FELT THAT THEIR PUTURE CONDITIONS LANDUSES WOULD BE
CHANGED BECAUSE IT WAS FELT THAT THEIR FUTURE CONDITIONS LANDOSES WOULD BE SIMILAR TO THE EXISTING CONDITIONS LANDOSES.

RETENTION VOLUMES WILL ALSO NOT BE UTILIZED FOR SUBBASINS 75, 79A, 79B, 78B, SOME QUEEN CREEK SUBBASINS WILL ALSO NOT HAVE RETENTION VOLUMES, EITHER BECAUSE THEY LIE IN PINAL COUNTY AND WE DON'T KNOW PINAL COUNTIES PLANS OR THEY LIE IN THE SANTAN MOUNTAINS AND WON'T GET DEVELOPED WILLIAMS GATEMAY AIRPORT (SUBBASINS 30A, 80B, 81A, AND 81B) ARE MODELED AS FUTURE CONDITIONS AND HAVE RETENTION VOLUMES FOR THE 10YR 2HR STORM
 PILEMAME: SOIBB.DAT
 THIS MODEL REPRESENTS THE FUTURE COMDITION OF THE WATERSHED.
 TOTAL DEATHAGE AREA IS APPROXIMATELY 213 SQ. MI.
THIS MODEL USES A Kn VALUE OF 0.09 FOR DESERT LAND USE DUE TO SHEET FLOW CONDITIONS.
 100-YEAR 24-HOUR FREQUENCY
AREAL REDUCTIONS FROM FCD HYDROLOGY MANUAL
THIS MODEL INCLUDES IMPLOW FROM MORTH OF THE SUPERSTITION FREEWAY
 AND EAST OF THE CAP
 DATA FROM THE QUEEN CREEK ADMS HAS BEEN ADDED TO CALCULATE FLOWS INTO THE EME. MUSKINGUM ROUTING MSTEPS WERE ADJUSTED TO BE WITHIN THE SUGGESTED RANGE.
 METHODOLOGY
 THE US CORPS OF EMGINEERS FLOOD HYDROLOGY MODEL HEC-1 DATED SEP1990 VER 4.0
 THE OF CORRESPONDED FROM PRODUCTION SCIENCE AND AMERICAN SECRET HYDROGRAPH
GREEN AND AMPT INFILTRATION EQUATION USED FOR CALCULATING LOSSES
 NORMAL DEPTH STORAGE CHANNEL ROUTING APPROXIMATE DIRECTION, LOCATION, AND LENGTH OF THE WASHES HAVE BEEN
```

EVALUATED BASED ON FIELD INVESTIGATION, USGS MAPS, LANDIS RERIAL SURVEYS THE NOAR TECHNICAL MEMORANDUM NOAR ATLAS 2 DEPTH AREA RATIOS

ORIGINAL STUDY PERFORMED BY LISA C. YOUNG AND AFSEIN AHOURAIYAN, UPDATED BY DAYID DEGERNESS (OCT-DEC, 1996). REVIEWED BY VALERIE A. SWICK AND AMIR MOTAMEDI OF THE FLOOD CONTROL DISTRICT HYDROLOGY BRANCH ENGINEERING DIVISION, FLOOD CONTROL DISTRICT OF MARICOPA COUNTY, DECEMBER - JULY 1995.

ASSUMED VELOCITY OF 1 FT/SEC FOR SHEET FLOW, 2-3 FT/SEC FOR HASH/NATURAL CHANNEL, 3 FT/SEC FOR ROAD AND GRASS CHANNEL, 10FT/SEC FOR COMCRETE CHANNEL

 $\forall \text{SLOCITIES}$ for admp improvement channels from dibble and associates suggested alternatives (July 1, 1997)

..... **** THE FOLIOWING NOTE WAS ADDED BY PRIMATECE ENGINEERS ON 06-12-2001 **** NOTE: MUST USE MEBUILD.DSS AS THE DSS FILE TO IMPORT FLOWS ACROSS THE SUFERENTITION PREEMAY.

```
NOTE: MUST USE NDIBPLDS AS THE DSS FILE TO IMPORT FLOWS ACROSS THE SUPERSTITION FREEWAY.
                                             DOM MCCHP2 SE NESA ADMP - SOUTH OF SUPERSTITION FWY, FUTURE CONDITIONS
                           OUTPUT CONTROL VARIABLES
418 IO
                                      IPRNT
IPLOT
                                                               5 PRINT CONTROL
0 FLOT CONTROL
0. HYDROGRAPH PLOT SCALE
                                     OSCAL
                         HYDROGRAPH TIME DATA

MHIN 5
IDATE 1AFR97 STARTING DATE
ITIME 0000 STARTING TIME
BQ 600 NUMBER OF HYDROGRAPH ORDINATES
HDDATE 3AFR97 EMDING DATE
HDDTIME 0155 EMDING TIME
ICENT 19 CENTURY MARK
       ır
                              COMPUTATION INTERVAL
                                       TATION INTERVAL ,08 HOURS
TOTAL TIME BASE 49.92 HOURS
               ENGLISH UNITS
                       DRAINAGE AREA
PRECIPITATION DEPTH
LENGTH, ELEVATION
                                                             SQUARE MILES
INCHES
FRET
CUSIC FRET PER SECOND
                       PION
STORAGE VOLUME
SURFACE AREA
TEMPERATURE
                                                              ACRE-FEET
ACRES
DEGREES FAHRENHEIT
```

420	JĐ	INDEX	STORM	NO.	1				
			STRM			3.60	PRECIPITATION	DEPTH	
			TRDA			.01	TRANSPOSITION	DRAIMAGE	AREA

	TRDA	.01	TRANSPOSITIO							
421 PI	PRECIPITATION	PATTERN								
	.00	.00	.00	.00	.00	.00	.00	.00	,00	,00
	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
	.00	,00		.00	.00	.00	.00	.00	.00	,00
	-00	.00		.00	.00	.00	.00	.00	.00	.00
	.00	.00		.00	.00	.00	.00	.00	.00	.00
	.00	.00		.00	.00	.00	.00	.00	.00	.00
	00	.00		.00	.00	.00	.00	.00	.00	.00
	_00	.00		.00	.00	.00	.00	.00	.00	.00
	.00	.00		.00	.00	.00	.00	.00	.00	.00
	.00	.00		.00	.00	.00	.00	.00	.00	.00
	_00	.00		.00	.00	.00	.09	.00	.00	.00
	_00	.00		.00	,00	,00	.00	.00	.00	.00
	_00	.00		.00	.00	,00	.00	.01	.00	.01
	.01	.01		.01	.01	,01	.01	.01	.03	.03
	.03	.D9		.09	.01	.01	.01	.01	.01	.01
	-01	.01		.01	.01	.01	.00	.00	.00	.00
	.00	.D C		.00	.00	,00	.00	.00	.00	.00
	.00	.0 0		.00	.00	.00	.00	.00	.00	.00
	_00	.00		.00	,00	.00	.00	.00	.00	.00
	.00	.00		.00	.00	.00	.00	.00	.00	.00
	_00	.00		.00	.00	.00	.00	.00	.00	.00
	_00	.00		.00	.00	.00	.00	.00	.00	.00
	_00	.00		.00	.00	,00	.00	.00	.00	.00
	_00	.0 0		.00	.00	.00	.00	.00	.00	.00
	_00	.D C		.00	.00	.00	.00	.00	.00	.00
	.00	.D C		.00	.00	.00	.00	.00	.00	.00
	.00	.D C		.00	.00	.00	.00	.00	.00	.00
	.00	. D O		.00	.00	.00	.00	.00	.00	.00
	.00	.D 0	.00	.00	.00	.00	.00	.00		
431 JD	INDEX STORM NO. STRM	3.58	PRECIPITATIO	N DEPTH	н					

	TRDA	1.00		SITION DRA						
0 PI	PRECIPITATION	PATTERN								
	.00	-00	.00	.0 0	.00	.00	.00	.00	.00	.00
		-00	.00	.00	.00	.00	.00	.00	.00	.00
	.00	-00	.00	.00	.00	.00	.00	.00	.00	.00
	.00	-00	.00	.00	.00	.00	.00	.00	.00	.00
	.00	-00	.00	.00	.00	.00	.00	.00	.00	.00
	.00	-DÓ	.00	.00	.00	.00	,00	.00	.00	.00
	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
	.00	.DO	.00	.00	,00	.00	.00	.00	.00	.00
	.00	.00	.00	.00	.00	.00	.00	.00	,00	.00

	.00	.00	.00	.00	.00	.00 .00	.00	.00 .00	.00	.00
	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
	.00 .01	.00	.00 .01	.00	.00	.00	.00	.01 .01	.00 .03	.01
	.01	.01	.01	.01 .09	.01	.01 .01	.01	.01	.01	.01
	.01	.01	.01	.01	.01	.01	.00	.00	.00	-00
	.00	.00	.00	.00	.00	.00 .00	.00	.00	.00	.00
	.00	.00	.00	.00	.00	.00	.00	,00	.00	.00
	.00	.00	.00	.00	.00	.00 .00	.00	.00	.00	.00
	.00	.00	.00	.00	.00	.00	.00	,00	.00	-00
	.00	.00	.00	-00	.00	-00	.00	.00	.00	.00
	.00	.00	.00	.00	.00	-00	.00	.00	.00	.00
	.00	.00	.00	.00	.00	-00	.00	.00	.00	.00
	.00 .00	.00	.00	.00	.00	.00	.00	.00	.00	.00
	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
432 JD	INDEX STORM NO.	•								
102 00	STRM	3.49		ATION DEPT						
	TRDA	5.00	TRAMSPOS:	ITION DRAI	NAGE AREA					
O PI	PRECIPITATION									
	.00	.00	.00	.00	.00	.00 .00	.00	.00	.00	.00
	.00	.00	.00	.00	.00	-00	.00	.00	.00	.00
	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
	.00	.00	.00	-00	.00	-00 -00	.00	.00	.00	.00
	.00	.00	.00	.00	.00	.00	.00	- 00	.00	.00
	.00	.00	.00	.00 .00	.00	.00 .00	.00	.00	.00 .00	.00
	.00	.00	.00	.00	.00	-00	.00	.00	.00	.00
	.00	.00	.00	.00	.00	-00	.00	.00	.00	.00
	. 00 . 00	.00	.00	.00	.00	.00	.00	.00	.00	.00 .01
	.01	.01	.01	.01	.01	.01	.01	.01	.03	.03
	.03 .01	.09 .01	.09	.09	.01 .01	.01	.01	.01 .00	.01	.01
	.00	,00	.00	.00	.00	.00	.00	.00	.00	.00
	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
	.00	,00	.00	.00	.00	.00	.00	.00	.00	.00
	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
	,00 ,00	,00	.00	.00	.00	.00	.00	.00	.00	.00 .00
	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
	.00	.00	.00	.00	.00	.00	.00	-00	.00	.00
	.00	.00	. 90	.00	.00	.00	.00	.00	.00	.00
	.00	.00 ,00								
433 JD	.00 .00 INDEX STORM NO.	.00 ,00	.00	.00	.00	.00	.00	.00		
433 JD	.00	.00 ,00	.00 .00 PRECIPITA	.00	00. 00.	.00	.00	.00		
	.00 .00 INDEX STORM NO. STRM TRDA	.00 ,00 4 3.38 10.00	.00 .00 PRECIPITA	.00 .00	00. 00.	.00	.00	.00		
433 JD	.00 .00 INDEX STORM NO. STRM	.00 ,00 4 3.38 10.00	.00 .00 PRECIPITA	.00 .00	00. 00.	.00	.00	.00		
	.00 .00 INDEX STORM NO. STRM TRDA PRECIPITATION .00	.00 ,00 4 3.38 10.00 PATTERN .00	PRECIPITA TRANSPOSE	.00 .00 ATION DEPT TION DRAI .00 .00	.00 .00 H HAGE AREA .00	.00	.00 .00	.00	.00	.00
	.00 .00 INDEX STORM NO. STRM TRDA PRECIPITATION .00	.00 ,00 4 3.38 10.00 PATTERN	.00 .06 PRECIPITA TRANSPOSE	.00 .00 ATION DEPT TION DRAI	.00 .00 H NAGE AREA	.00	.00	.00	.00	.00
	.00 .00 INDEX STORM NO. STRM TRDA PRECIPITATION .00 .00 .00	.00 ,00 4 3.38 10.00 PATTERN .00 .00	PRECIPITY TRANSPOS:	.00 .00 ATION DEPT TION DRAI .00 .00 .00 .00	.00 .00 HAGE AREA .00 .00 .00	.00 .00	.00	.00	.00	.00 .00 .00 .00
	.00 .00 INDEX STORM NO. STRM TRDA PRECIPITATION .00 .00 .00	.00 ,00 4 3.38 10.00 PATTERN .00 .00 .00	.00 .00 PRECIPITA TRANSPOSE .00 .00 .00 .00	.00 .00 ation dept trion drai .00 .00 .00 .00	.00 .00 H HAGE AREA .00 .00 .00 .00	.00 .00	.00 .00 .00 .00 .00	.00	.00 .00 .00 .00	.00 .00 .00 .00
	.00 .00 INDEX STORM NO. STRM TRDA PRECIPITATION .00 .00 .00 .00	.00 ,00 4 3.38 10.00 PATTERN .00 .00 .00 .00	.00 .06 PRECIPITY TRANSPOS: .00 .00 .00 .00 .00	.00 .00 ation deptition drai	.00 .00 H HARGE AREA .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00	.00	.00 .00 .00 .00 .00	.00 .00 .00 .00 .00
	.00 .00 INDEX STORM NO. STRM TRDA PRECIPITATION .00 .00 .00 .00	.00 ,00 4 3.38 10.00 PATTERN .00 .00 .00 .00	.00 .06 PRECIPITY TRANSPOS: .00 .00 .00 .00 .00 .00 .00	.00 .00 ation dept trion drai	.00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00	.00 .00	.00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00
	.00 .00 INDEX STORM NO. STRM TRDA PRECIPITATION .00 .00 .00 .00 .00 .00	.00,000 4 3.38 10.000 PATTERN .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	.00 .00 .00 PRECIPIT: TRANSPOS: .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	.00 .00 ATION DEPT TION DRAI .00 .00 .00 .00 .00 .00 .00	.00 .00 H HAGE AREA .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00	.00	.00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00
	.00 .00 INDEX STORM NO. STRM TRDA PRECIPITATION .00 .00 .00 .00 .00 .00 .00	.00 ,00 4 3.38 10.00 PATTERN .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 PRECIPIT; TRANSPOS: .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	.00 .00 ATION DEPAI TION DRAI	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00
	.00 .00 INDEX STORM NO. STRM TRDA PRECIPITATION .00 .00 .00 .00 .00 .00	.00,000 4 3.38 10.000 PATTERN .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	.00 .00 .00 PRECIPIT: TRANSPOS: .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	.00 .00 .00 DEPITION DEPITION DRAI	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00
	.00 .00 INDEX STORM NO. STRM TRDA PRECIPITATION .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	.00 ,00 4 3,38 10.00 PATTERN .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	.00 .06 PRECIPITY TRANSPOST .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	.00 .00 .00 .00 DEPITION DEPITION DRAI	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
	.00 .00 INDEX STORM NO. STRM TRDA PRECIPITATION .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	.00 ,00 4 3.38 10.00 PATTERN .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	.00 .06 PRECIPITY TRANSPOS: .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	.00 .00 .00 DEPTITION DEPTITION DRAI	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
	.00 .00 INDEX STORM NO. STRM TRDA PRECIPITATION .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	.00 ,00 4 3.38 10.00 PATTERN .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 DEPTITION DEPTITION DRAI	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
	.00 .00 INDEX STORM NO. STRM TRDA PRECIPITATION .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	.00 ,00 4	.00 .06 .06 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 DEFITION DEFITION DRAI	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
	.00 .00 INDEX STORM NO. STRM TRDA PRECIPITATION .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	.00 ,00 4 3.38 10.00 PATTERN .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 DEPTITION DEPTITION DRAI	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
	.00 .00 INDEX STORM NO. STRM TRDA PRECIPITATION .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	.00 ,00 4	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 DEPITION DEPITITION DRAI	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
	.00 .00 INDEX STORM NO. STRM TRDA PRECIPITATION .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	.00 ,00 4 3.38 10.00 PATTERN .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 DEPTITION DEPTITION DRAI	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
	.00 .00 INDEX STORM NO. STRM TRDA PRECIPITATION .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	.00 ,00 ,00 ,00 ,00 ,00 ,00 ,00 ,00 ,00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
	.00 .00 INDEX STORM NO. STRM TRDA PRECIPITATION .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	.00 ,00	.00 .06 .06 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 DEPTITION DEPTITION DRAI	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
	.00 .00 INDEX STORM NO. STRM TRDA PRECIPITATION .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
	.00 .00 INDEX STORM NO. STRM TRDA PRECIPITATION .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	.00 ,00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
	.00 .00 INDEX STORM NO. STRM TRDA PRECIPITATION .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	.00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
G PX	.00 .00 INDEX STORM NO. STRM TRDA PRECIPITATION .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	.00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
0 PI	.00 .00 INDEX STORM NO. STRM TRDA PRECIPITATION .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	.00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
G PX	.00 .00 INDEX STORM NO. STRM TRDA PRECIPITATION .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	.00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
0 PI	.00 .00 INDEX STORM NO. STRM TRDA PRECIPITATION .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	.00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
0 PI	.00 .00 INDEX STORM NO. STRM TRDA PRECIPITATION .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	.00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
0 PI	.00 .00 INDEX STORM NO. STRM TRDA PRECIPITATION .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	.00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
0 PI	.00 .00 INDEX STORM NO. STRM TRDA PRECIPITATION .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	.00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
0 PI	.00 .00 INDEX STORM NO. STRM TRDA PRECIPITATION .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	.00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00

435 JD	.00 .00 .00 .00 .00 .00 .01 .03 .01 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .01 .00 .00 .00 .00	.00 .00 .00 .00 .01 .09 .01 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .01 .09 .01 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .01 .01 .01 .00 .00	.00 .00 .00 .00 .01 .01 .01 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .01 .01 .01 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .01 .03 .01 .00 .00 .00 .00 .00 .00 .00 .00 .00
100 00	STRM TRDA	3,10 60.00		TATION DEP: SITION DRA:						
0 PI	PRECIPITATION ,00 ,00 ,00 ,00 ,00 ,00 ,00 ,00 ,00 ,0	PATTERN .000 .000 .000 .000 .000 .000 .000 .0	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
436 JD	INDEX STORM NO.	7 3.05	PRECIPIT	ATION DEPI	en e	.00	100	100		
0 PI	TRDA PRECIPITATION .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
o bi	TRDA PRECIPITATION .00 .00	120.00		ATION DEPT ITION DRAI .00 .00		.00 .00	.00 .00	.00 .00	.00 .00	,00 ,00
	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00

00	.00 .00 .00 .00 .01 .01 .01 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .01 .01 .00 .00 .00 .00
00	.00 .00 .00 .00 .01 .01 .01 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .01 .03 .01 .00 .00 .00 .00 .00 .00 .00 .00
-00 -00 -00 -00 -00 -00 -00 -00 -00 -00	.00 .00 .00 .01 .01 .01 .00 .00 .00 .00	.00 .00 .00 .00 .03 .01 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .01 .03 .01 .00 .00 .00 .00 .00 .00 .00 .00 .00
-00 -00 -00 -00 -00 -00 -00 -00 -00 -00	.00 .00 .01 .01 .00 .00 .00 .00 .00 .00	.00 .00 .03 .01 .00 .00 .00 .00 .00 .00 .00 .00	.06 .06 .01 .03 .01 .00 .00 .00 .00 .00 .00 .00
-00 -00 -00 -00 -00 -00 -00 -00 -00 -00	.00 .01 .01 .00 .00 .00 .00 .00 .00 .00	.00 .00 .03 .01 .00 .00 .00 .00 .00 .00 .00 .00	.00 .01 .03 .01 .00 .00 .00 .00 .00 .00 .00
-00 -00 -00 -00 -00 -00 -00 -00 -00 -00	.01 .01 .00 .00 .00 .00 .00 .00 .00	.00 .03 .01 .00 .00 .00 .00 .00 .00 .00 .00	.01 .03 .01 .06 .06 .06 .06 .06 .06 .06
-01 -01 -01 -01 -01 -01 -01 -01 -01 -01	.01 .00 .00 .00 .00 .00 .00 .00 .00 .00	.03 .01 .09 .09 .09 .09 .09 .09 .00 .00	.03 .01 .00 .00 .00 .00 .00 .00 .00
-03 -09 -09 -01 -01 -01 -01 -01 -01 -01 -01 -01 -01	.01 .00 .00 .00 .00 .00 .00 .00 .00	.01 .00 .00 .00 .00 .00 .00 .00	.02 .06 .06 .06 .06 .06 .06 .06 .06
-01 -01 -01 -01 -01 -01 -01 -01 -01 -01	.00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00
-00	.00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00
-00 -00 -00 -00 -00 -00 -00 -00 -00 -00	.00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00
-00 -00 -00 -00 -00 -00 -00 -00 -00 -00	.00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00
-00 -00 -00 -00 -00 -00 -00 -00 -00 -00	.00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00
-00	.00 .00 .00 .00 .00 .00 .00	.00 ,00 ,00 .00 .00 .00	.00 .00 .00 .00 .00 .00
-00	.00 .00 .00 .00 .00 .00	,00 ,00 ,00 ,00 ,00 ,00	.00 .00 .00 .00 .00
-00	.00 .00 .00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
-00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
100	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00
436 JD INDEX STORM NO. 9 STRM 2.97 PRECIPITATION DEPTH -90 .00 .00 .00 .00 .00 .00 .00 -00 .00 .00 .00 .00 .00 .00 -00 .00 .00 .00 .00 .00 .00 -00 .00 .00 .00 .00 .00 .00 -00 .00 .00 .00 .00 .00 .00	.00 .00 .00	.00	.00 .00 .00
436 JD INDEX STORM NO. 9 STRM 2.97 PRECIPITATION DEPTH .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	.00 .00 .00	.00	.00
436 JD INDEX STORM NO. 9 STRM 2.97 PRECIPITATION DEPTH	.00	.00	.00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00		
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00		.00	
436 JD INDEX STORM NO. 9 STRM 2.97 PRECIPITATION DEPTH	.00		-00
STRM 2.97 PRECIPITATION DEPTH			
STRM 2.97 PRECIPITATION DEPTH			
TRDA 150.00 TRANSPOSITION DRAINAGE AREA			
A D-			
0 PI PRECIPITATION PATTERN			
go. 60. 60. 60. 00. 00.	-00	.00	.00
00. 00. 00. 00. 00. 00.	.00	.00	.00
00. 00. 00. 00. 00.	.00	.00	.00
00. 00. 00. 00. 00.	.00	.00	.00
00. 00. 00. 00. 00. 00.	.00	.00	.00
00. 00. 00. 00. 00. 00.	.00	.00	.00
00, 00, 00, 00, 00,	.00	.00	.00
00. 00. 00. 00. 00.	.00	.00	.00
00, 00, 00, 00, 00, 00,	.00	.00	.00
00, 00, 00, 00, 00.	-00	.00	.00
00, 00, 00, 00, 00,	.00	.00	.00
00, 00, 00, 00, 00, 00,	.00	.00	.00
00 00 00 00 00 00	.01	.00	.01
.01 .01 .01 .01 .01 .01	.01	.03	.03
.03 .09 .09 .01 .01 .01	.01		.01
		.01	
00, 10, 10, 10, 10, 10, 10, 10, 10, 00, 0	.00	.00	.00
	.00	.00	.00
	.00	.00	.00
00, 00, 00, 00, 00, 00,	.00	.00	.00
00, 00, 00, 00, 00, 00, 00, 00, 00, 00,			.00
00, 00, 00, 00, 00, 00, 00, 00, 00, 00,	.00	.00	
00, 00, 00, 00, 00, 00, 00, 00, 00, 00,	.00	.00	.00
00. 00. 00. 00. 00. 00. 00. 00. 00. 00.	.00 .00 .00	.00	.00
00, 00, 00, 00, 00, 00, 00, 00, 00, 00,	.00	.00	.00
00. 00. 00. 00. 00. 00. 00. 00. 00. 00.	.00 .00 .00	.00	.00
00, 00, 00, 00, 00, 00, 00, 00, 00, 00,	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00
00, 00, 00, 00, 00, 00, 00, 00, 00, 00,	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00
00, 00, 00, 00, 00, 00, 00, 00, 00, 00,	.00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00	00. 00. 00. 00. 00.
00, 00, 00, 00, 00, 00, 00, 00, 00, 00,	.00 .00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00

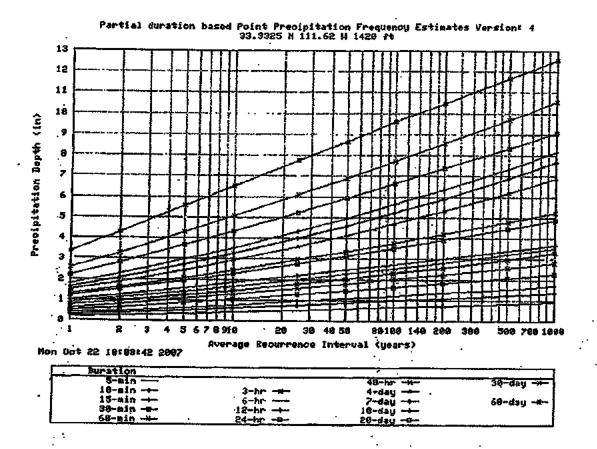
RUNOFF SUMMARY
FLOW IN CUBIC FEET PER SECOND
TIME IN HOURS, AREA IN SQUARE MILES

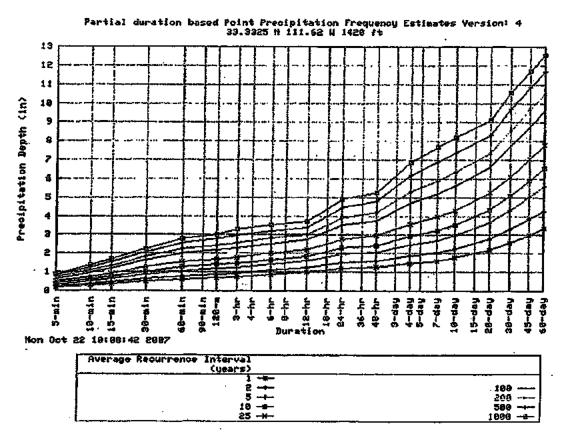
	OPERATION	STATION	PBAK FLOW	TIME OF PEAK	AVERAGE F	LOW FOR MAXIMO	M PERIOD	Basin Area	MAXIMUM STAGE	TIME OF MAX STAGE
÷	21 D1414 F 41.	O.M. IVII	1100	e trux	6-HOUR	24-H00R	72-HOOR	BASA	31805	the street
+	HYDROGRAPH AT	17	153	10.40		,				
7		• •	151.	12.42	19.	6.	3.	.13		
+	DIVERSION TO	17RET	151.	12.42	19.	5.	2.	.13		
+	HYDROGRAPH AT	RET17	3.	13.83	2.	1.	0.	.13		

*** NORMAL END OF MEC-1 ***

1

NOAA Atlas Precipitation Data


POINT PRECIPITATION FREQUENCY ESTIMATES FROM NOAA ATLAS 14



Arizona 33.3325 N 111.62 W 1420 feet
from "Precipitation-Frequency Atlas of the United States" NOAA Allas 14, Volume 1, Version 4
G.M. Bonnie, D. Martin, B. Lin, T. Parzybok, M. Yekur, and D. Riley
NOAA, National Weather Service, Silver Spring, Maryland, 2006
Estracted: Mon Oct 22 2007

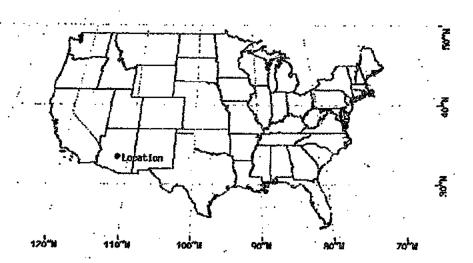
Co	nfider	ice Li	niks	1	Seas	sonality Location Maps						Other Info. GIS d					Maps	Help
	Precipitation Frequency Estimates (inches)																	
ARI* (years)	5 min	10 mhe	15 min	30 min	60 min	120 min	3 hr	6 br	12 hr	24 br	48 hr	4 day	7 day	10 day	20 day	30 day	45 day	60 day
	0.19																2.99	3,33
	0.25																	4.28
																	5.02	5.58
	0.40																5.90	6.53
	0.50																7,05	7.76
	0.57			1.44	1.78	1.95	2.03	2.26	2.46	3.12	3.35	4.13	4.59	4.96	5.94	6.91		8.68
	0.64																	9.60
																	9.69	
																	10.84	
1000	0.89	1.35	1.68	2.26	2.79	3.04	3.28	3.52	3.69	4.88	5.25	6.87	7.68	8.17	9.10	10.57	11.71	12.53
Text version of table These predplaten frequency estimates are based on a patient duration series. And is the Average Recurrence interval. Please refer to the <u>documentation</u> for more information. NOTE: Formating forces estimates near zero to appear as zero.																		

MESA PROVING GROUNDS ONSITE PRECEPITATION DEPTHS

Confidence Limits -

* Upper bound of the 90% confidence interval Precipitation Frequency Estimates (inches)																		
ARI** (years)	5 min	· 10 min	15 min	30 min	60 min	120 min	3 hr	6 hr	12 hr	24 br	48 hг	4 day	7 day	10 day	20 day	30 day	45 day	60 day
1	0.23	0.35	0.44	0.59	0.73	0.82	0.89	1.03	1.14	1.36	1.42	1.62	1.79	1.95	2.42	2.81	3.29	3.65
2 .	0.30	0.46	0.57	0.77	0.96	1.06	1.14	1.31	1.44	1.72	1.81	2.07	2.28	2.48	3.10	3.60	4.22	4.70
																4.70		
																5.54		
25	0.60	0.91	1.13	1.52	1.88	2.04	2.14	2.33	2.49	3.09	3.30	3.94	4,38	4.73	5,77	6.68	7.75	8.52
50	0.68	1,04	1.29	1.74	2.15	2.32	2.44	2.63	2.79	3.50	3.75	4.54	5.05	5,43	6.54	7.56	8.71	9.53
100	0.77	1.17	1.45	1.95	2.42	2.61	2.76	2.95	3.11	3.93	4.22	5.18	5.76	6.18	7.33	8.48	9.69	10.55
200	0.86	1.30	1.61	2.17	2.69	2.90	3.09	3.28	3.43	4.38	4.71	5.86	6.53	6.97	8.13	9.41	10.67	11.55
500	0.98	1.49	1.84	2.48	3.07	3.30	3.56	3.74	3.88	5.01	5.40	6.83	7.62	8.11	9.24	10.69	11.98	12.88
1900	1.07	1.63	2.02	2.72	3.36	3.63	3.94	4.11	4.24	5.53	5.95	7.63	8.53	9.02	10.11	11.71	12.99	13.88

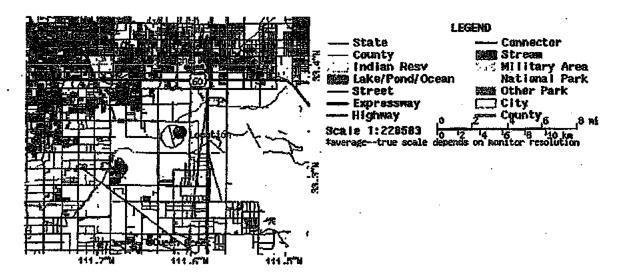
[&]quot;The upper bound of the confidence interval at 90% confidence level is the value which 5% of the simulated quantile values for a given frequency are greater than, "Those precipitation frequency estimates are based on a partial devalue state. And is the Average Recurrence Interval.


Please rater to the <u>documentation</u> for more information. MOTE: Formating prevents estimates near zero to appear as zero.

^{*} Lower bound of the 90% confidence interval

					Prec	ipitat	ion l	regu	епсу	Esti	mates	i (inc	hes)					
ARI** (years)	5 min	10 min	15 mia	30 min	60 mla	120 min	3 hr	6 hr	12 hr	24 hr	48 hr	4 day	7 day	10 day	29 day	30 day	45 day	60 day
1	0.16	0.24	0.30	0.41	0.50	0.58	0.61	0.76	0.87	1.08	1.14	1.34	1.48	1.61	1.99	2.33	2,72	3.04
2	0.21	0.32	0.40	0.53	0.66	0.75	0.79	0.96	1.10	1.37	1.44	1.70	1.88	2.06	2.55	2.98	3.49	3.90
5	0.28	0.43	0.53	0.71	0.88	0.99	1.03	1.22	1.39	1.74	1.86	2.22	2.46	2.69	3.34	3.90	4.56	5.08
10	0.34	0.51	0.63	0.85	1.05	1.17	1.21	1.42	1.60	2.04	2.18	2.64	2.93	3.19	3.93	4.60	5.35	5.93
25	0.41	0.62	0.76	1.03	1.27	1.41	1.46	1.69	1.88	2.43	2.61	3.23	3.58	3.90	4.73	5.52	6.38	7.03
50	0.46	0.70	0.86	1.16	1.44	I.58	1.64	1.88	2.09	2.73	2.94	3.69	4.10	4.44	5.33	6.22	7.14	7.83
100	0.51	0.77	0.96	1.29	1.59	1.75	1.82	2.07	2.29	3.04	3.27	4.17	4.64	5.01	5.94	6.93	7.90	8.62
200	0.56	0.84	1.05	1.41	1.75	1.91	2.01	2.26	2.49	3.34	3.60	4.66	5.20	5.60	6.54	7.63	8.63	9.38
500	0.62	0.94	1.16	1.57	1.94	2.12	2.25	2.51	2.73	3.74	4.03	5.34	5.96	6.40	7.33	8.55	9.58	10.35
1060	0.66	1.00	1.25	1.68	2.08	2.27	2.42	2.68	2.92	4.04	4.35	5.88	6.57	7.03	7.92	9.23	10.28	11.05

The lower bound of the confidence interval at 90% confidence level is the value which 5% of the simulated quantity values for a given framency are less than


Maps -

These maps were produced using a direct map request from the U.S. Consest Pureau Magnine and Carton politic Resources Tigas New Server.

Plaase read <u>disciolmer</u> for more information.

Please refer to the decumentation for more information. NOTE: Formating prevents estimates near zero to appear as zero.

Other Maps/Photographs --

<u>View USGS digital orthophoto quadrangle (DOO)</u> covering this location from TerraServer, USGS Aerial Photograph may also be available

from this site. A DOQ is a computer-generated image of an aerial photograph in which image displacement caused by terrain relief and camera tilts has been removed. It combines the image characteristics of a photograph with the geometric qualities of a map. Visit the <u>USGS</u> for more information.

Watershed/Stream Flow Information -

Find the Watershed for this location using the U.S. Environmental Protection Agency's site.

Climate Data Sources -

Precipitation frequency results are based on data from a variety of sources, but largely NCDC. The following links provide general information

about observing sites in the area, regardless of if their data was used in this study. For detailed information about the stations used in this study,

please refer to our documentation.

Using the National Climatic Data Center's (NCDC) station search engine, locate other climate stations within:

+/-30 minutes ...OR... +/-1 degree of this location (33.3325/-111.62). Digital ASCII data can be obtained directly from NCDC.

Find Natural Resources Conservation Service (NRCS) SNOTEL (SNOwpack TELemetry) stations by visiting the Western Regional Climate Center's state-specific SNOTEL station maps.

Hydrometeorological Design Studies Center DOC/NOAA/national Weather Service 1325 East-West Highway Silver Spring, MD 20919 (301) 713-1669 Ouestions?: HDSC.Ouestions@noas.goy

Disclaimer

Post Developed HEC-1 Sub-Basin Data

WOOD/PATEL

CIVIL ENGINEERS * HYDROLOGISTS * LAND SURVEYORS

Table 1 - Post Developed HEC-1 Sub-Basin Data


Sub-basin data based on aerial photo and proposed topography Description:

Eastmark - East Mesa, Arizona Location

DDMSW Version 4.6.0 Reference:

ONSITE BASINS										
Ol dissa du S	Basin Area	Basin Area	L Basin Area	Length	Length	Length +10%	∃9S∩	DSGE	eon	Lca
Oun-todall ID	(sq. ft.)	(acres)	(sq. mi)	(ft)	(mi)	(mi) ¹	(#)	(#)	(tt)	(mj)
17	3,722,860	85.47	0.134	4430	0.84	0.92	1412.0	1394.0	2485	0.47
Totals	3.722,860	85.47	0.134							

Notes: 1) 10% was added to onsite watercourse lengths to account for future roadway curvature.

Table 2 - Post Developed HEC-1 - Soils Data

Description: Post Developed Soil Data

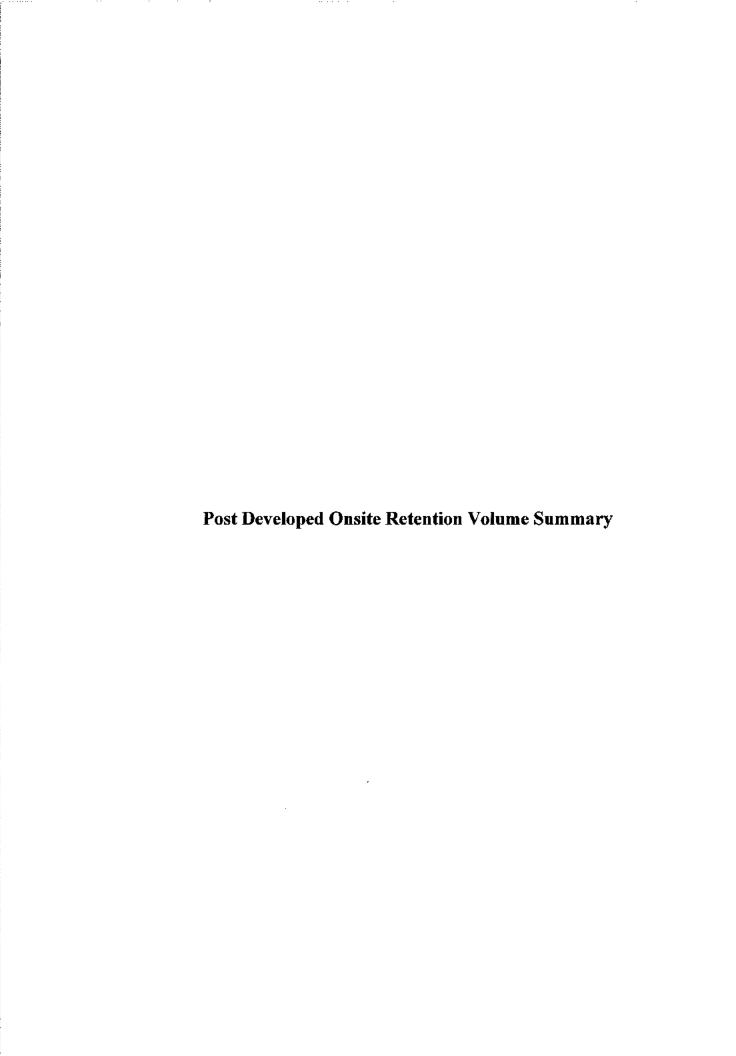
Location Eastmark - East Mesa, Arizona

Reference: NRCS Web Soil Survey

Aguila-Carefree Area Soil Survey

Sub-Basin ID	Soil Id	Soil Type	Area (acres)	Area (sq. mi.)
	2	Antho Gravelly Sandy Loams	0.33	0.001
17	55	Gillman Loams	7.33	0.011
	112	Tremant Gravelly Sandy Loams	77.81	0.122
		TOTAL	85.47	0.134

Post Developed HEC-1 Land Use Data


Table 3 - Post Developed HEC-1 Land Use Data

Description: Land use data based on proposed development

Location Eastmark - East Mesa, Arizona

Reference: DDMSW Version 4.6.0

2	0.045	0.050
Land Use Area (sq. mi.)	0.1323	0.0013
.and Use Area Land Use Area (sq. ft.) (acres) (sq. mi.)	84.7	8.0
 Land Use Area (sq. ft.)	3689532	34848
Land Use	Medium Lot Residential (2-4 DU/Acre)	Active Open Space
DU Area (ac)	25.5	?
DU	2	3
Basin Area (sq. mi)	0.1338	3
Basin Area (acres)	85.5	?
Basin Area (sq. ft.)	3722860	01 55000
Sub-Basin ID	17	:

Table 4 - Onsite Retention Volume Summary

Calculation of Required Retention Volume Using the Rational Method Description:

Eastmark Location

Drainage Design Manual for Maricopa County, Vol. I, Hydrology Reference:

Known Values: Design storm: 100-yr, 2-hr Rainfall, D: 2.19 inches

V = DAC Calc. Values:

V = Retention Volume Required Where:

D = Depth of Rainfall (ft)

A = Area of Watershed Contributing C = Runoff Coefficient

			111111					
ntion - 100	Retention - 100YR, 2HR Volumes		f the Powerl	(South of the Powerline Floodway)	(
		Sub-basin	asin	Develop	Development Unit			C//007 1-1-E
Retention Basin	Retention Location	Contributing Sub-basin	Contributing Sub-basin Area (acres)	Contributing DUs	Contributing Contributing Sub-basin Area DUs basin (acres)	Weighted "C ₁₀₀ "	100YR - 2HR Volume Required (acre-feet)	2HR Volume Required (acre-feet)
RET17	£-Na	17	85.50	DU-3	85.50	99.0	10.1	10.1

ac-ft 10.1 Eastmark DU-3S Requred Retention Total =

ac-ft

10.1

PLATE 1
Vicinity Map

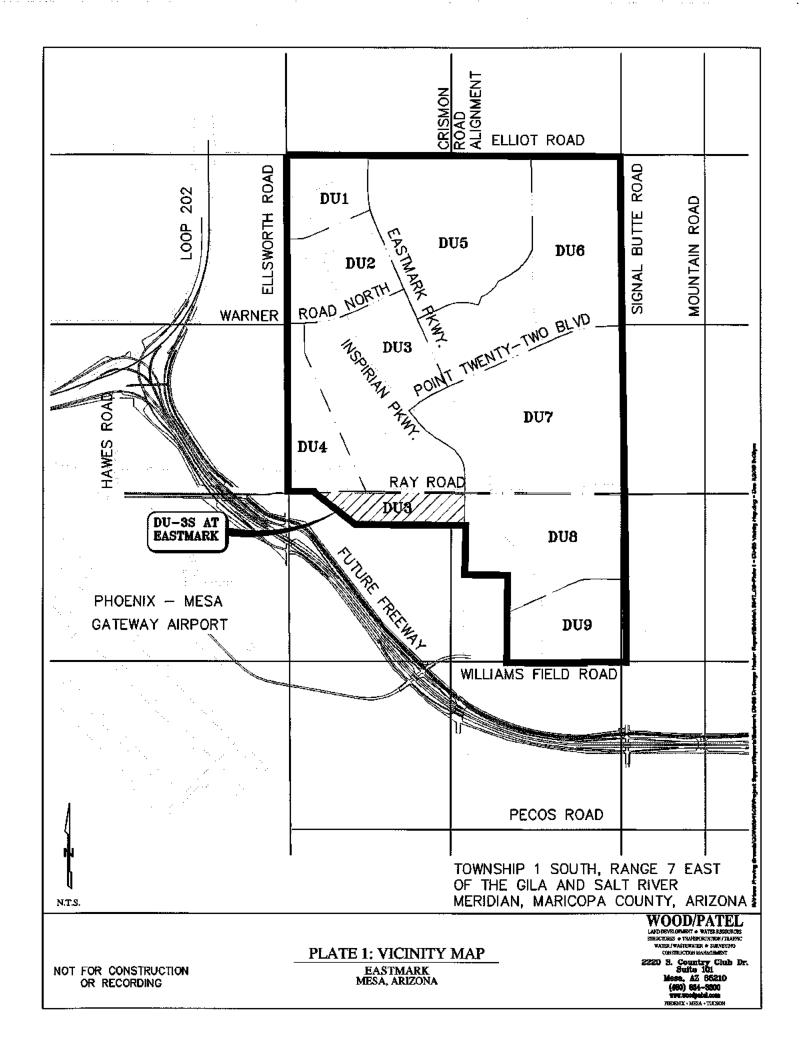


PLATE 2
Soils Map

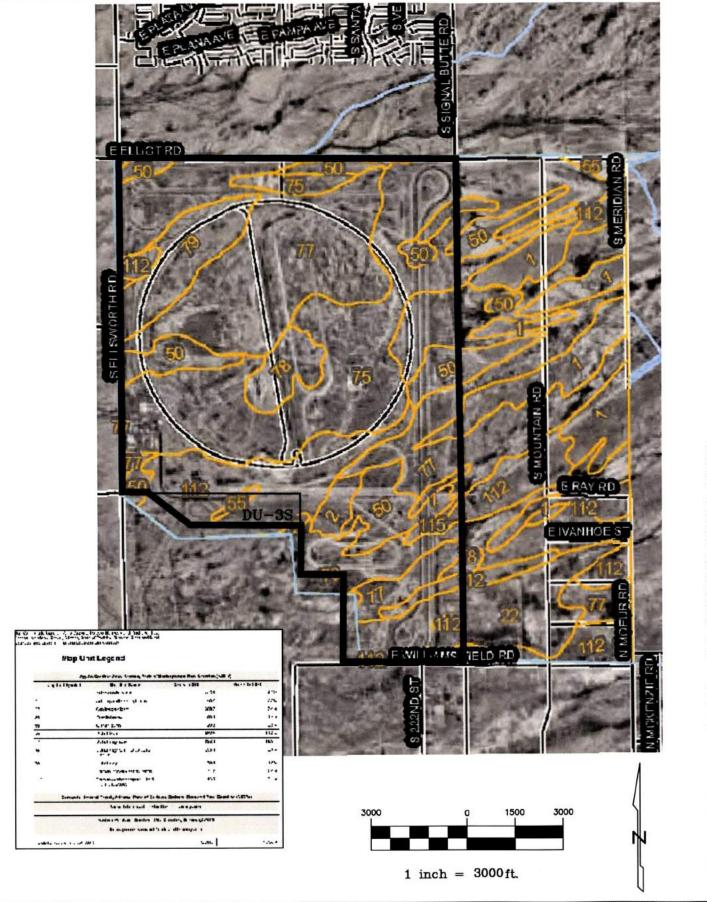
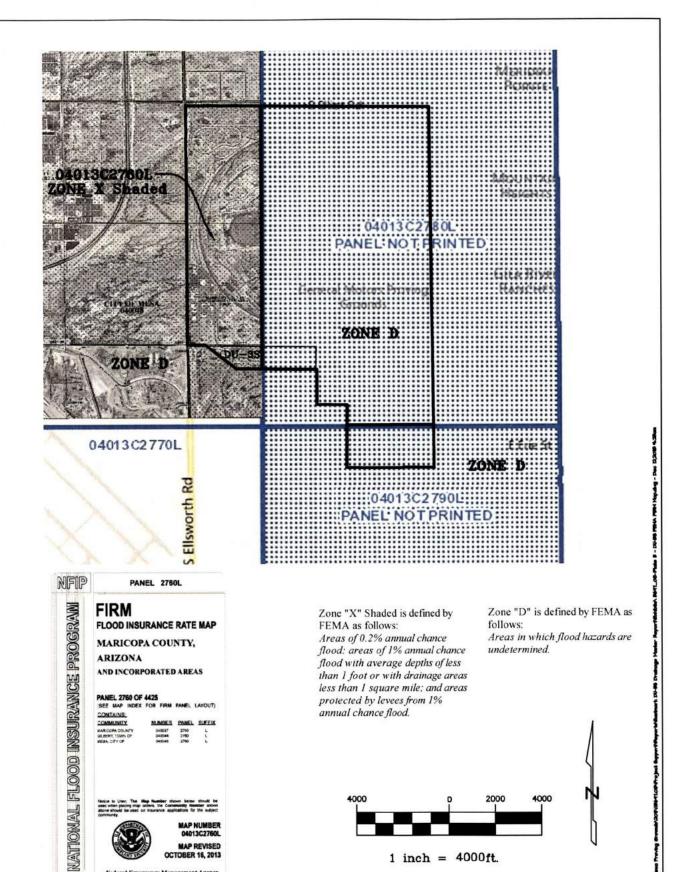


PLATE 2: SOILS MAP


EASTMARK MESA, ARIZONA

WOOD/PATEL

LAND DEVELOPMENT • WATER RESOURCES
STRUCTURES • TRANSPORTATION /TRAPPIC
WATER / WASTEWATER • SURVEYING

WATER/WASTEWATER • SURVEYING
CONSTRUCTION MANAGEMENT
2220 S. Country Club Dr.
Suite 101
Mess., AZ 85210
(480) 834–3300
www.roofstilom
PROBRIX · MESA · TUCSON

PLATE 3 Flood Insurance Rate Map

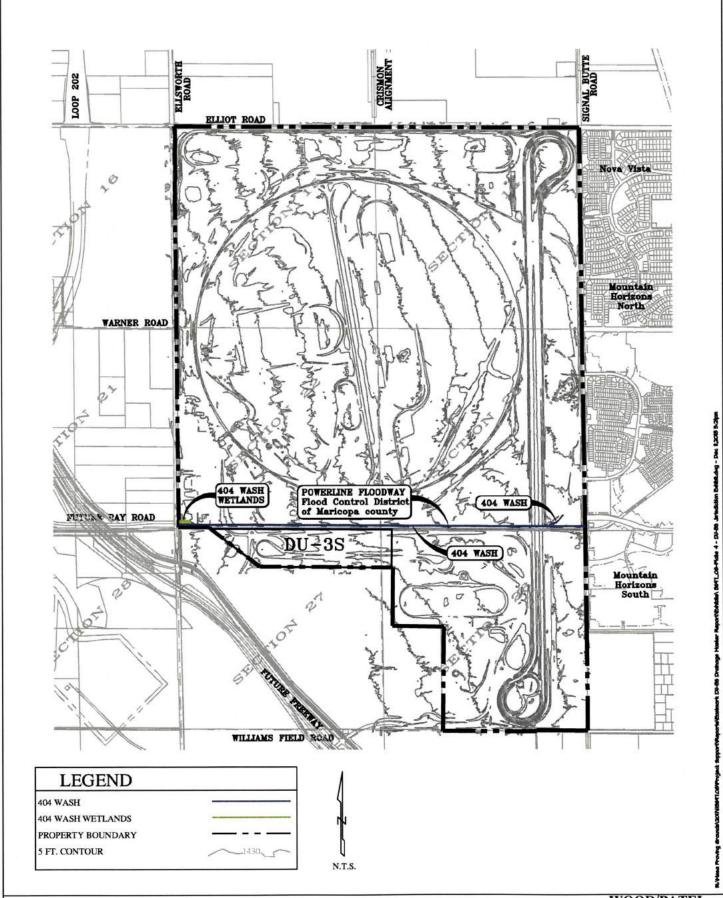


PLATE 3: FEMA FIRM MAP

1 inch = 4000ft.

EASTMARK MESA, ARIZONA

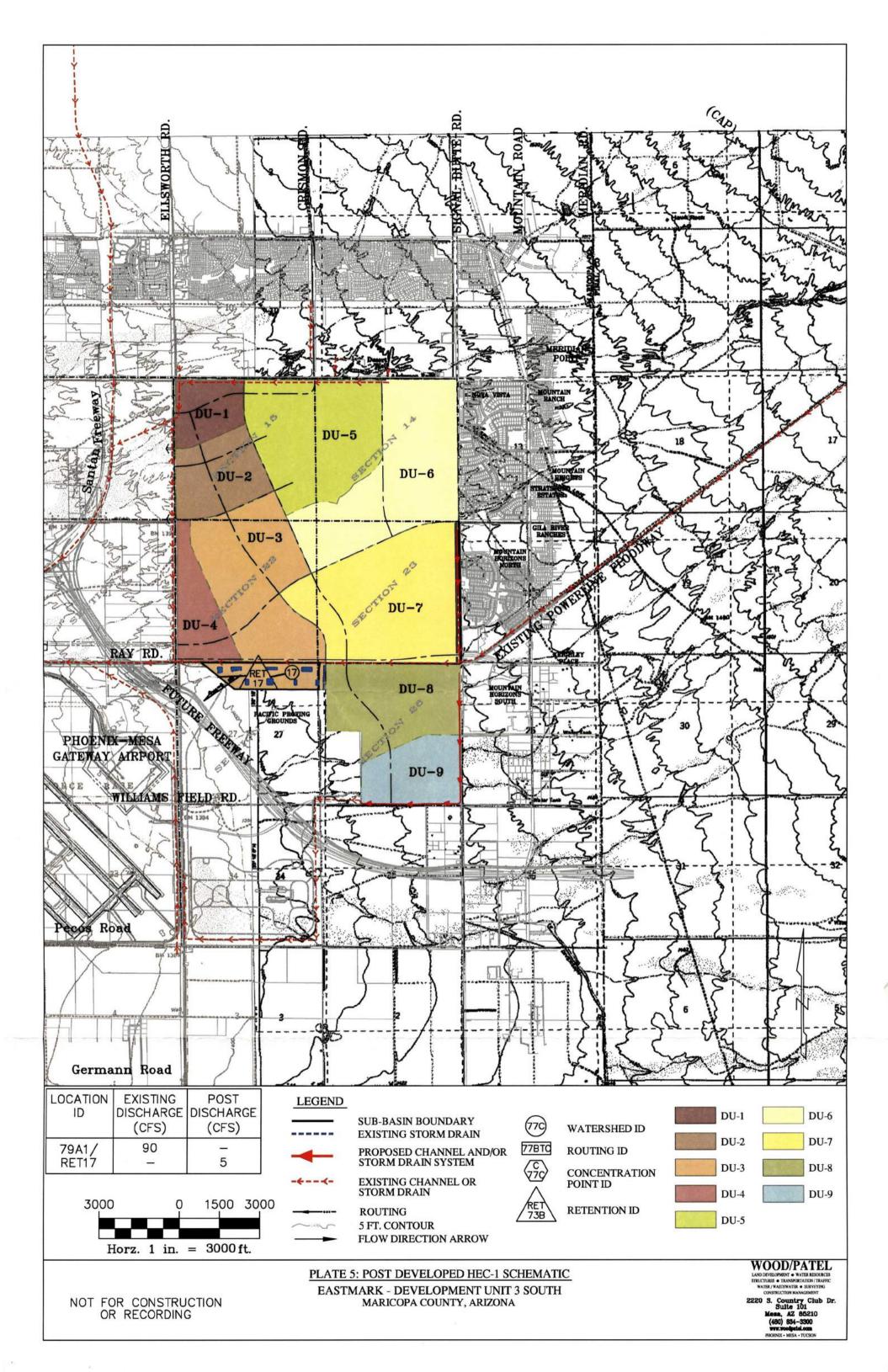
PLATE 4 Section 404 Jurisdictional Delineation Map

PLATE 4: 404 JURISDICTIONAL DELINEATION MAP

NOT FOR CONSTRUCTION OR RECORDING

EASTMARK MESA, ARIZONA

WOOD/PATEL


LAND DEVELOPMENT • WATER RESOURCE STRUCTURES • TRANSPORTATION / TRAFFF WATER / WASTEWATER • SURVEYING

2220 S. Country Club Dr. Suite 101 Mesa, AZ 85210

(480) 834-3300 www.voodpetel.com

PLATE 5

Post Developed HEC-1 Schematic

