MASTER DRAINAGE REPORT FOR DEVELOPMENT UNIT 2 AT EASTMARK

December 9, 2019 WP# 195036

Brookfield	MASTER	<^
Residential	DEVELOPER	EASTMARK.
	APPROVAL	
attat		1719
Christina C	hristian - De	u. Mngr.
Master	Reports - D	02

Submitted to: City of Mesa 55 North Center Street P.O. Box 1466 Mesa, Arizona 85211-1466 Phone: (480) 644-3258

Prepared for:DMB Mesa Proving Grounds, LLC14646 North Kierland BoulevardSuite 270Scottsdale, Arizona 85258Phone: (602) 903-7506

Prepared by:

Wood, Patel & Associates, Inc. 1630 South Stapley Drive Suite 219 Mesa, Arizona 85204 *Phone: (480) 834-3300*

TABLE OF CONTENTS

1.1 General Background and Project Location 1.2 Scope of the DU 2 Master Drainage Report 1.3 Construction Phasing 2.0 DESCRIPTION OF STUDY AREA 2.1 Existing Soil Conditions 2.2 Rainfall Seasons 2.3 FEMA Flood Insurance Rate Map (FIRM) 2.4 Section 404 Jurisdictional Areas 2.5 Master Drainage Report Update for Eastmark 3.0 PRE-DEVELOPED DRAINAGE CONDITION 3.1 Pre-Developed Drainage 3.1.1 Northern Boundary 3.1.2 Eastern Boundary 3.1.3 Western Boundary 3.1.4 Southern Boundary 3.1.3 Western Boundary 3.1.4 Southern Boundary 3.1.3 Western Boundary 3.1.4 Southern Boundary 3.1.3 Storthyrology 4.3 Proposed Drainage Plan 4.2 Proposed Condition Hydrology 4.3 Proposed Hydraulics 4.3.1 Stremwater Quelity	
1.2 Scope of the DU 2 Master Drainage Report 1.3 Construction Phasing 2.0 DESCRIPTION OF STUDY AREA 2.1 Existing Soil Conditions 2.2 Rainfall Seasons 2.3 FEMA Flood Insurance Rate Map (FIRM) 2.4 Section 404 Jurisdictional Areas 2.5 Master Drainage Report Update for Eastmark 3.0 PRE-DEVELOPED DRAINAGE CONDITION 3.1 Pre-Developed Drainage 3.1.1 Northern Boundary 3.1.2 Eastern Boundary 3.1.3 Western Boundary 3.1.4 Southern Boundary 3.1.5 Proposed Drainage Plan 4.1 Proposed Condition Hydrology 4.3 Proposed Hydraulics 4.4 Retention 4.4.1 Retention Storage 4.4.2 Stormwater Quality	
 1.3 Construction Phasing	2 3 3
 2.0 DESCRIPTION OF STUDY AREA	3
 2.1 Existing Soil Conditions	3
 2.2 Rainfall Seasons	
 2.3 FEMA Flood Insurance Rate Map (FIRM)	3
 2.4 Section 404 Jurisdictional Areas	3
 2.5 Master Drainage Report Update for Eastmark	4
 3.0 PRE-DEVELOPED DRAINAGE CONDITION 3.1 Pre-Developed Drainage 3.1.1 Northern Boundary 3.1.2 Eastern Boundary 3.1.3 Western Boundary 3.1.4 Southern Boundary 3.1.4 Southern Boundary 4.0 PROPOSED DRAINAGE CONDITION 4.1 Proposed Drainage Plan 4.2 Proposed Drainage Plan 4.3 Proposed Hydraulics 4.3 Proposed Hydraulics 4.4 Retention 4.4.1 Retention Storage 	4
 3.1 Pre-Developed Drainage	6
 3.1.1 Northern Boundary	6
 3.1.2 Eastern Boundary	6
 3.1.3 Western Boundary	6
 3.1.4 Southern Boundary	7
 4.0 PROPOSED DRAINAGE CONDITION	7
 4.1 Proposed Drainage Plan	8
 4.2 Proposed Condition Hydrology	
 4.3 Proposed Hydraulics	9
 4.3.1 Street Hydraulics 4.4 Retention	9
 4.4 Retention	9
4.4.1 Retention Storage	10
4.4.2 Stormwater Quality	10
T.T.2 Stormwater Quality	10
4.5 Maintenance	11
5.0 CONCLUSIONS	12
6.0 REFERENCES.	13

i

APPENDICES

Appendix A Interim Condition Data and Hydrology

- Hydrology Interim Condition 100-year, 24-hour HEC-1 Output
- NOAA Atlas Precipitation Data
- Interim Condition HEC-1 Sub-Basin Data
- Interim Condition HEC-1 Soil Data
- Interim Condition HEC-1 Land Use Data
- Interim Condition HEC-1 Routing Data
- Interim Condition Onsite Retention Volume Summary
- Post-Developed Rating Curve for CP7C

EXHIBITS

Exhibit 1	Vicinity Map
Exhibit 2	Soils Map
Exhibit 3	Flood Insurance Rate Map
Exhibit 4	Section 404 Jurisdictional Delineation Map
Exhibit 5	Interim Condition HEC-1 Schematic
Exhibit 6	Interim Drainage Map

km Y:\WP\Reports\Residential\195036 Eastmark DU 2 Master Drainage Report.docx

1.0 INTRODUCTION

1.1 General Background and Project Location

The proposed Development Unit 2 (Site) is anticipated to comprise approximately 179 acres within the 3,154-acre Eastmark master planned community in the City of Mesa (City). Development Unit 2 (DU 2) is planned to include single-family residential, multi-family residential, office, and open spaces.

This Master Drainage Report has been prepared in accordance with Wood, Patel & Associates, Inc.'s (WOODPATEL's) understanding of the City and the Flood Control District of Maricopa County (FCDMC) drainage requirements.

The Site is located within Section 15, Township 1 South, Range 7 East of the Gila and Salt River Meridian. The Site is bounded by Warner Road to the south (from Ellsworth Road to Eastmark Parkway), Eastmark Parkway on the east (from Warner Road to Mesquite Road alignment), the Mesquite Road alignment on the north (from Ellsworth Road to Eastmark Parkway), and Ellsworth Road on the west (refer to Exhibit 1 - Vicinity Map).

The Site consists of multiple automotive test tracks and undisturbed desert. The Site was previously used by General Motors as a desert automobile testing facility. The Powerline Floodway is a major FCDMC facility that provides conveyance of discharge from the Powerline Flood Retarding Structure, approximately three miles east of the Site, and drainage conveyance for stormwater runoff for areas adjacent to the channel. Ultimately, the flow is conveyed to the East Maricopa Floodway (EMF) west of the Site.

1.2 Scope of the DU 2 Master Drainage Report

The DU 2 Master Drainage Report presents the drainage analysis for the Site, and is consistent with procedures and standards of the City of Mesa and the Flood Control District of Maricopa County. The proposed drainage plan provides an outline for the required major drainage facilities for storage and conveyance of storm water runoff for the development of DU 2 at Eastmark.

Due to the flexible nature of the zoning within Eastmark, land uses and planning have changed from initial planning. Updates to this DU Master Drainage Report may be required if significant changes are made to the land uses and assumptions utilized to prepare this report. Sizing of onsite drainage infrastructure such as channels and storm drains will be completed with the final site design.

1.3 Construction Phasing

It is unknown at this time if DU 2 construction and drainage infrastructure will be phased. The entire DU could be mass graded as one (1) site, and final infrastructure could be phased as is currently being completed within DU 3/4 North.

2.0 DESCRIPTION OF STUDY AREA

2.1 Existing Soil Conditions

According to the Natural Resources Conservation Service's Soil Survey, Eastmark is located within the Aguila-Carefree soil survey area. The majority of the surface soils onsite are classified as sandy loam, clay loam, or loam. Refer to Exhibit 2 - Soils Map, and Appendix A – *Proposed Condition Data and Hydrology* for information pertaining to existing soil conditions.

2.2 Rainfall Seasons

There are two distinct rainfall seasons associated with the desert southwest corresponding to the project area. The first season occurs during the winter months, from November to March, when the area is subjected to occasional storms from the Pacific Ocean. While classified as a rainfall season, there can be long periods where there can be little or no precipitation. Generally, storms occurring during the winter rainfall season are classified as being long-duration, low-intensity storms.

The second rainfall period occurs during the summer months, from June through August, and is commonly referred to as the Monsoon Season. During this season, Arizona is subjected to widespread thunderstorm activity, whose moisture supply originates both in the Gulf of Mexico and along Mexico's west coast. These thunderstorms are typically classified as being short-duration, high-intensity storms, with extreme variability per location.

2.3 FEMA Flood Insurance Rate Map (FIRM)

The Maricopa County, Arizona and Incorporated Areas Flood Insurance Rate Map (FIRM) Panel Number 04013C2760L, dated October 16, 2013, indicates that the western edge of the Site, approximately 405 acres, is within Zone "X" Shaded.

Zone "X" Shaded is defined by FEMA as follows:

"Areas of 0.2% annual chance flood: areas of 1% annual chance flood with average depths of less than 1 foot or with drainage areas less than 1 square mile; and areas protected by levees from 1% annual chance flood."

Additionally, Panel Number 04013C2760L indicates area beyond the eastern map boundary is within Zone "D". The FEMA website indicates this area is within the Maricopa County, Arizona and Incorporated Areas Flood Insurance Rate Map (FIRM) Panel Number 04013C2780L. The FEMA website shows the panel as not printed and does not indicate a flood zone designation. Based on the Zone "D" markings on Panel Number 04013C2760L, and previously-mapped Panel Number 04013CIND0A, dated September 30, 2005, portions of Eastmark within Panel Number 04013C2780L, are believed to be within a FEMA Zone "D".

Zone "D" is defined by FEMA as follows:

"Areas in which flood hazards are undetermined."

Refer to Exhibit 3 – *Flood Insurance Rate Map* for an illustration.

2.4 Section 404 Jurisdictional Areas

A Jurisdictional Delineation was completed by the U.S. Army Corps of Engineers (Corps) for Eastmark. The Powerline Floodway Channel, a small wash, and a detention basin have been designated as Jurisdictional. Refer to Exhibit 4 – *Section 404 Jurisdictional Delineation Map* for the locations of Jurisdictional areas.

The Powerline Floodway lies south of DU 2 and is to remain undisturbed. It is WOODPATEL's understanding an individual permit was obtained for disturbance to the wash and basin.

2.5 Master Drainage Report Update for Eastmark

The *Master Drainage Report Update for Eastmark*, prepared by WOODPATEL and dated October 3, 2017, was approved by the City of Mesa. Additionally, the *Master Drainage Report Update for Eastmark*, prepared by WOODPATEL, dated December 9, 2019, was submitted concurrently to the City of Mesa for review and re-approval to incorporate development changes and has set the drainage criteria for the Site. The report includes a pre-developed condition HEC-1 model (MPGEX.DAT), as well as a full build-out model (EMDU34.DAT), which are modified versions of the current flood control district area drainage master plan models. The East Mesa Area Drainage Master Plan (ADMP), prepared in 1998 by Dibble & Associates, Inc. and Hoskin Ryan Consultants, Inc., is a regional drainage study prepared for the FCDMC.

Eastmark is located in the eastern portion of the study area, which is bound by the Flood Retarding Structures (FRS) in Pinal County to the east and the EMF to the west. In general, the area drains northeast to southwest, and outlets into the EMF. The ADMP sets the regional drainage constraints for facilities within the study area of Eastmark. The full build-out model was utilized to verify the development of Eastmark does not negatively impact any drainage infrastructure downstream.

3.0 PRE-DEVELOPED DRAINAGE CONDITION

3.1 **Pre-Developed Drainage**

The Site generally slopes in a southwesterly direction at approximately 0.5 to 1 percent. The peak elevation within the Site is 1,415 feet mean sea level (MSL), located near the intersection of Eastmark Parkway and Mesquite Road alignment. The lowest elevation within the Site is approximately 1,396 feet MSL, located near the intersection of Warner Road and Ellsworth Road. It is anticipated DU 3/4 will be constructed prior to the development of DU 2. Currently, the Site is covered with typical Sonoran Desert vegetation, including cactus, creosote, etc.

The pre-developed Eastmark hydrology was made up of one sub-basin which drains west to southwest into Ellsworth Road and the Powerline Floodway. This has been modeled accordingly within the current 100-year, 24-hour FCDMC model and the Master Drainage Report model.

3.1.1 Northern Boundary

Runoff along the northern boundary flows southerly across the proposed Mesquite Road alignment. Near the western end of the northern boundary, future Mesquite Road intersects with the existing circle race track previously utilized by General Motors. The track is elevated above adjacent ground, and currently retains a large watershed to the east. If Mesquite Road is constructed below the track berm elevation, a temporary berm or retention basin will likely be required to store runoff from the tributary watershed, and shall store the 100-year, 24-hour storm event to match existing conditions leaving the Site. These drainage measures will require design by the site Civil Engineer.

3.1.2 Eastern Boundary

DU 6 South (DU 6S) has been recently constructed and retains runoff from the 100-year, 2-hour storm event. During the 100-year, 24-hour storm event, minimal flows will impact DU 2 at the DU 6S outfall locations along the major roadways, which act as the emergency overflow corridors. The northern portion of the eastern boundary is bounded by undeveloped land in DU 5N. In the interim condition, existing and proposed berms and basins will need to be utilized to retain the 100-year, 24-hour storm event.

3.1.3 Western Boundary

The western boundary is not impacted by any offsite flows entering the Site. Ellsworth Road is adjacent to the western boundary of the Site. Within the northern portion of Ellsworth Road, an existing storm drain conveys storm water runoff from Ellsworth Road north to an existing channel. Additionally, within the southern portion of Ellsworth Road, an existing storm drain conveys storm water runoff from Ellsworth Road and discharges into the Powerline Floodway, south of Ray Road. This storm drain was sized to convey the 10-year storm event for Ellsworth Road; thus, a portion of the 100-year storm runoff generated from the east half street of Ellsworth Road will need to be retained within DU 2.

3.1.4 Southern Boundary

The southern boundary of DU 2 is bound by Warner Road and DU 3/4. No offsite flows impact the southern boundary of the Site, as DU 3/4 retains the 100-year storm event.

4.0 PROPOSED DRAINAGE CONDITION

4.1 Proposed Drainage Plan

The drainage concept for DU 2 is to route the minimal offsite flows from the east and DU 6S through the Site within streets and drainage corridors, while directing onsite storm water runoff to retention basins for storage. Offsite runoff impacting the northern boundary will be collected and stored with existing and proposed temporary berms and/or retention basins. Temporary basins within Sub-basin 75 shall be sized to store 75% of the runoff from the 100-year, 24-hour storm event for tributary areas to maintain peak flows and runoff volumes leaving the Site at or below pre-development levels. Temporary basins within Sub-basin 01A shall be sized to store 100% of the runoff from the 100-year, 24-hour storm event. Onsite infrastructure will depend upon construction phasing and will be determined and designed by the site Engineer.

Onsite runoff will be collected in roadways for overland flow conveyance to localized retention basins. Where street capacities are exceeded, vertical curb and/or underground storm drain systems may be utilized to convey the excess runoff. Refer to Exhibit 5 - Interim Condition HEC-1 Schematic for watershed delineations and locations.

The Great Park Phase 4 retention basins shall be sized to retain runoff volume from a 100-year, 24-hour storm event for the eastern portion of the Site. A precipitation depth equal to 3.51 inches or greater was utilized in accordance with *NOAA Atlas 14* and the City of Mesa to maintain peak flows and runoff volumes leaving Eastmark at or below pre-development levels. Retention basins for the remainder of DU 2 shall be sized to retain runoff volume from a 100-year, 2-hour storm event, utilizing a precipitation depth of 2.19 inches or greater.

Emergency overflow routes must be provided in the event that retention basin capacities are exceeded due to a storm larger than the design event or back-to-back storms as provided by the final design engineering of each site and development phase. Retention basins shall be designed to drain retained runoff within 36-hours after a storm event. Land uses for undeveloped land depicted in the hydrologic models are conceptual and subject to change, based on the allowable criteria for a PCD.

In all locations, lowest floor elevations shall be set a minimum of 1 foot above the emergency overflow elevation or any 100-year water surface elevation adjacent the Site, whichever is greater.

4.2 Proposed Condition Hydrology

An interim condition HEC-1 model (DU2INT.DAT) was created to estimate peak flows when DU 2 is developed prior to the full build-out of Eastmark. The model was created based upon the most current post developed condition model. The undeveloped watersheds within Eastmark and outside DU 2 were modeled with a low-density employment land use to represent an automotive proving ground, per the FCDMC's DDMSW program, with exception to previously master planned Development Units. Those areas, including Development Units 3/4, 3S, 6S, 7, 8, and 9, were modeled with post-developed land uses. Additionally, Parcel DU 6A within DU 6N, and Parcel DU 5A within DU 5N, have been modeled with post-developed land uses. Retention from these developed areas was included within the model.

PRE-DE CONI	VELOPED DITION	INTERIM CONDITION		FULL BUILD-OUT CONDITION	
Location ID	Discharge	Location ID	Discharge	Location ID	Discharge
CP 75	661cfs	CP75	661 cfs	CP75	661 cfs
79A1	90 cfs	RET17	1 cfs	RET17	1 cfs
79A2	225 cfs	CP19A	57 cfs	CP19A	57 cfs
79A3	156 cfs	RET19	134 cfs	RET19	134 cfs
C79B1	1,090 cfs	78CT79	940 cfs	78CT79	940 cfs

4.3 Proposed Hydraulics

4.3.1 Street Hydraulics

Arterials and major collectors shall be designed to convey the peak flows generated by a 10-year peak storm within the roadway infrastructure, with a spread limited to 1 traffic lane in each direction. All other public roadways shall be designed to convey the peak flows generated by a 10-year peak storm between the curbs. All roadways shall be designed to convey the 100-year storm within the right-of-way and adjacent parkway. Where the peak flows exceed the capacity of the public street to convey the peak flows, storm drains or other drainage facilities shall be installed and sized to carry the excess flows (i.e. when the 10-year peak exceeds the spread criteria or exceeds the curb capacity of the

public street, or when the right-of-way cannot convey the 100-year peak flow). Storm drain and/or channel systems will convey storm water runoff to retention basins located throughout the Site.

4.4 Retention

4.4.1 Retention Storage

The 100-year, 2-hour required retention volume for Sub-basin 12A within DU 2 is estimated to be 7.12 acre-feet, based on the conceptual land use. The 100-year, 24-hour required volume for Sub-basin 7A within DU 2 is estimated to be 22.07 acre-feet. Additionally, the 100-year, 24-hour retention required for Sub-basin 4A is estimated to be 5.13 ac-ft. These retention volumes have been included in the HEC-1 model. If actual land uses and required retention volumes vary from this report, updates to this report may be required to analyze impacts to downstream drainage infrastructure.

Refer to *Table 5 - Interim Condition Onsite Retention Volume Summary* within Appendix A for a detailed summary of required retention volumes. The proposed retention volumes are based on a 100-year, 2-hour precipitation depth of 2.19 inches, and a 100-year, 24-hour precipitation depth of 3.51 inches, obtained from NOAA Atlas 14 Precipitation Frequency Data. Retention basins will be required to dissipate storm water within 36-hours.

The temporary retention modeled for the offsite portion of Eastmark, Sub-basins 01A and 75, were assumed to be 100% and 75%, respectively, of the interim peak-flow. If interim-condition berming and storage are modified by construction the assumption of interim storage should be re-evaluated.

4.4.2 Stormwater Quality

The required retention storage volume for the Site exceeds the first flush requirement of storing the first one-half inch of runoff. All runoff will have settlement time within retention basins prior to draining by percolation, drywells, release into natural watercourses, and/or release into existing storm drain systems.

4.5 Maintenance

Ongoing maintenance of the designed or recommended drainage systems will be required to preserve the design integrity and purpose of the drainage system. Failure to provide maintenance can prevent the drainage system from performing to its intended design purpose, and can result in reduced performance. Maintenance is the responsibility of private developers and owners associations for facilities on private property within all easements and private streets, except for drainage structures within public rights-of-way accepted by the City of Mesa for maintenance. Ownership and maintenance responsibilities will be associated with developments discharging to retention facilities and will be managed by the owners associations established for the Site. A regular maintenance program is required to have drainage systems perform to the level of protection or service as presented in this report.

5.0 CONCLUSIONS

Based on the analysis of the *Master Drainage Report for Development Unit 2 at Eastmark*, the following conclusions can be made:

- 1. This *Master Drainage Report for Development Unit 2 at Eastmark* is prepared in accordance with Wood, Patel & Associates, Inc.'s understanding of the drainage parameters set by the Flood Control District of Maricopa County, the City of Mesa, and the *Master Drainage Report for Eastmark*.
- 2. Offsite flows shall be conveyed around and through the Site adequately, per jurisdictional requirements.
- 3. Peak flows and runoff volumes for the proposed condition 100-year, 24-hour storm shall not negatively impact downstream drainage infrastructure.
- 4. Onsite retention shall be provided to retain runoff generated by the 100-year, 2-hour storm event for the majority of developed areas within DU 2. Additionally, Sub-basin 7A will be required to retain runoff generated by the 100-year, 24-hour storm event.
- 6. Flow in excess of onsite storage capacity shall outfall to emergency overflow routes as specified by the design engineer.
- 7. Lowest floor elevations shall be set a minimum of 1 foot above the adjacent 100-year water surface elevation or emergency outfall water surface elevation, whichever is greater.
- 8. Drainage infrastructure will be designed in accordance with the appropriate criteria, per the City of Mesa and/or Flood Control District of Maricopa County.
- 9. Ongoing maintenance is required for all drainage systems in order to assure design performance.

6.0 **REFERENCES**

- 1. *Master Drainage Report Update for Eastmark*, Wood, Patel & Associates, Inc., December 9, 2019.
- 2. *Drainage Design Manual for Maricopa, County, Arizona, Hydrology,* Flood Control District of Maricopa County, August 15, 2013.
- Drainage Design Manual for Maricopa County, Arizona, Hydraulics, Flood Control District of Maricopa County, August 15, 2013.
- 4. *Drainage Policies and Standards for Maricopa County*, Arizona, Flood Control District of Maricopa County, June 2016.
- 5. 2019 Engineering & Design Standards, City of Mesa, April 2019.
- 6. *Flood Insurance Rate Map 04013C2760L*, Federal Emergency Management Agency (FEMA), October 16, 2013.
- 7. *HEC-1 Flood Hydrograph Package*, U.S. Army Corps of Engineers, June 1998.

APPENDIX A

INTERIM CONDITION DATA AND HYDROLOGY

Hydrology Interim Condition 100-Year, 24-Hour HEC-1 Output

1**************************************	* *

*	*
*	
 * FLOOD HYDROGRAPH PACKAGE (HEC-1) 	*
*	
* JUN 1998	*
*	
* VERSION 4.1	*
*	
*	*
*	
* RUN DATE 06DEC19 TIME 15:18:14	*
*	
*	*
*	
**********	* *

- * U.S. ARMY CORPS OF ENGINEERS
- * HYDROLOGIC ENGINEERING CENTER
- * 600 GECOND CEREER
- 609 SECOND STREET
- * DAVIS, CALIFORNIA 95616
 - (916) 756-1104

х	х	XXXXXXX	XX	XXX		х
х	х	Х	х	Х		XX
Х	Х	Х	х			х
XXXX	XXXX	XXXX	х		XXXXX	х
х	х	Х	х			х
Х	Х	Х	х	х		х
Х	Х	XXXXXXX	XX	XXX		XXX

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE, SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

		HEC-1 INPUT	PAGE	1
LINE	ID	1		
1	ID	FILE: DU2INT.DAT		
3	ID	MODEL REVISED: 12-6-2019		
5	ID ID	PROJECT: MASTER DRAINAGE REPORT FOR DU 2 AT EASTMARK		
7 8	ID ID	THIS MODEL IS AN EXERPT OF THE FULL BUILD OUT MODEL. NO REFERENCE TO OTHER MODELS IS REQUIRED TO RUN THIS MODEL.		
9 10	ID ID	MODEL REVISION DESCRIPTION:		
11 12	ID ID	THIS MODEL IS AN EXERPT OF THE MODEL PROVIDED BY THE FLOOD CONTROL		
13	ID ID	DISTRICT OF MARICOPA COUNTY (NS4-SEM.DAT). LAND USES FOR DU 2, HAVE BEEN UPDATED TO REFLECT DETAILED PLANNING.		
15 16 17	ID ID ID	THE UNLEVELOPED FORIION OF DU SN AND 6N HAS BEEN REVISED TO REMAIN AS EXISTING LAND USE.LAND USE FOR DU 1 HAS BEEN REVISED TO DEMAIN AS EVICTING LAND USE FOR THIS INTERIM CONDITION		
18	ID ID	THIS IS AN INTERIM CONDITION MODEL WHICH INCLUDES ONSITE MODELING FOR THOSE DEVELOPMENT UNITS THAT HAVE BEEN CONSTRUCTED, PERMITTED, OR		
20 21	ID ID	WHICH HAVE BEEN MASTER PLANNED. THIS INCLUDES:DU 3/4, 3S, 7N, 8/9 AND PORTIONS OF 5N AND 6N. THE REMAINING SUBBASINS ARE MODELED AS EXISTING		
22 23	ID ID	LOW DENSITY PROVING GROUNDS.		
24 25	ID ID	MODEL REVISED BY: WOOD, PATEL & ASSOCIATES, INC.		
26 27	ID	STEVE MCKEE, P.E.		
28 29	ID ID	FILE PATH: Z:\EASTMARK\2019\195036\PROJECT_SUPPORT\REPORTS\DRAINAGE\		
30 31	ID ID ID	DU 2 MP\HYDROLOGY\PROPOSED\DU21NT.DAT		
33	ID ID ID	FILE: DU34INT.DAT		
35 36	ID ID	MODEL REVISED: 12-5-2019		
37 38	ID ID	PROJECT: MASTER DRAINAGE REPORT FOR DU 3/4 AT EASTMARK		
39 40	ID ID	THIS MODEL IS AN EXERPT OF THE FULL BUILD OUT MODEL. NO REFERENCE TO OTHER MODELS IS REQUIRED TO RUN THIS MODEL.		
41 42	ID ID	MODEL REVISION DESCRIPTION:		
43 44 45	ID ID ID	THIS MODEL IS AN EXERPT OF THE MODEL PROVIDED BY THE FLOOD CONTROL		
46	ID ID	HAVE BEEN UPDATED TO REFLECT DETAILED PLANNING. THE UNDEVELOPED PORTION OF DU 5N AND 6N HAS BEEN REVISED TO		
48 49	ID ID	REMAIN AS EXISTING LAND USE. LAND USES FOR DU 1 AND 2 HAVE BEEN REVISED TO REMAIN AS EXISTING LAND		
50 51	ID ID	USE FOR THIS INTERIM CONDITION. THIS IS AN INTERIM CONDITION MODEL WHICH INCLUDES ONSITE MODELING FOR THE FOLLOWING DEVELOPMENT		
52 53	ID ID	UNITS WHICH HAVE HAD DETAILED MASTER PLANS PREPARED, INCLUDING: DU 8/9, 3S, 7N, 5N, 6N, AND 6S. THE REMAINING ONSITE IS CONTEMPLATED		
54 55	ID ID	AS EXISTING LAND USE.	D. 65	0
LINE	TD	HEC-1 INPUT	PAGE	2

56

1

1

ID

MODEL REVISED BY:

57 58	ID ID	WOOD, PATEL & ASSOCIATES, INC. STEVE MCKEE, P.E.	
59	ID		
60 61	ID ID	FILE PATH: Z:\EASTMARK\2019\195036\PROJECT SUPPORT\REPORTS\DRAINAGE\	
62	ID	DU 3-4 MP UPDATE\HYDROLOGY\PROPOSED\DU34INT.DAT	
64	ID	******	
65 66	ID ID	FILE: DU34INT.DAT	
67 68	ID	MODEL REVISED: 9-25-2017	
69	ID	PROJECT: MASTER DRAINAGE REPORT FOR DU 3/4 AT EASTMARK	
70	ID	THIS MODEL IS AN EXERPT OF THE FULL BUILD OUT MODEL. NO REFERENCE TO	
72	ID	OTHER MODELS IS REQUIRED TO RUN THIS MODEL.	
74	ID	MODEL REVISION DESCRIPTION:	
75 76	ID ID	THIS MODEL IS AN EXERPT OF THE MODEL PROVIDED BY THE FLOOD CONTROL	
77	ID	DISTRICT OF MARICOPA COUNTY (WS4-SEM.DAT). LAND USES FOR DU 3/4,	
78	ID	SN, AND ON HAVE BEEN OPDATED TO REFLECT DETAILED PLANNING. LAND USES FOR DU 1 AND 2 HAVE BEEN REVISED TO REMAIN AS EXISTING LAND	
80 81	ID TD	USE FOR THIS INTERIM CONDITION. THIS IS AN INTERIM CONDITION MODEL WHICH INCLUDES ONSITE MODELING FOR THE FOLLOWING DEVELOPMENT	
82	ID	UNITS WHICH HAVE HAD DETAILED MASTER PLANS PREPARED, INCLUDING:	
83 84	ID	DU 8/9, 3S, 7N, 5N, 6N, AND 6S. THE REMAINING ONSITE IS CONTEMPLATED AS EXISTING LAND USE.	
85 86	ID	MODEL PEVISED BY:	
87	ID	WOOD, PATEL & ASSOCIATES, INC.	
88 89	ID ID	STEVE MCKEE, P.E.	
90	ID	FILE PATH:	
91 92	ID	Z:\EASTMARK\201/\1/4/08\PROJECT SUPPORT\REPORTS\DRAINAGE\ DU 3-4 MP UPDATE\HYDROLOGY\PROPOSED\DU34INT.DAT	
93 94	ID TD	*****	
95	ID	FILE: DU56INT.DAT	
96 97	ID	MODEL REVISED: 4-10-2017	
98 99	ID TD	PROJECT: MASTER DRAINAGE REPORT FOR DIL 5 5N AND 6 SOUTH AT EASTMARK	
100	ID		
101 102	ID ID	THIS MODEL IS AN EXERPT OF THE FULL BUILD OUT MODEL. NO REFERENCE TO OTHER MODELS IS REQUIRED TO RUN THIS MODEL.	
103	ID	MODEL DEVISION DESCRIPTION:	
105	ID	NOBE REVISION DESCRIPTION.	
106 107	ID ID	THIS MODEL IS AN EXERPT OF THE MODEL PROVIDED BY THE FLOOD CONTROL DISTRICT OF MARICOPA COUNTY (WS4-SEM.DAT), LAND USES FOR DU 5.5N.6S,	
108	ID	6N, AND PARCELS 3/4-1 THROUGH 3/4-4 WITHIN DU 3/4 HAVE BEEN UPDATED	
	τD	TO REFLECT DETAILED PLANNING. LAND USES FOR DU 1, 2, AND THE REMAINING	
110	ID	DU 3/4 HAVE BEEN REVISED TO REMAIN AS EXISTING LAND USE FOR THIS	
110	ID	DU 3/4 HAVE BEEN REVISED TO REMAIN AS EXISTING LAND USE FOR THIS HEC-1 INPUT	PAGE 3
110 110 LINE	ID ID	DU 3/4 HAVE BEEN REVISED TO REMAIN AS EXISTING LAND USE FOR THIS HEC-1 INPUT 1	PAGE 3
110 110 LINE 111	ID ID ID	DU 3/4 HAVE BEEN REVISED TO REMAIN AS EXISTING LAND USE FOR THIS HEC-1 INPUT 	PAGE 3
110 LINE 111 112 113	ID ID ID ID ID ID	DU 3/4 HAVE BEEN REVISED TO REMAIN AS EXISTING LAND USE FOR THIS HEC-1 INPUT 	PAGE 3
110 LINE 111 112 113 114 115	ID ID ID ID ID ID ID	DU 3/4 HAVE BEEN REVISED TO REMAIN AS EXISTING LAND USE FOR THIS HEC-1 INPUT 	PAGE 3
110 LINE 111 112 113 114 115 116	ID ID ID ID ID ID ID ID	DU 3/4 HAVE BEEN REVISED TO REMAIN AS EXISTING LAND USE FOR THIS HEC-1 INPUT 	PAGE 3
LINE 111 112 113 114 115 116 117 118	ID ID ID ID ID ID ID ID ID ID	DU 3/4 HAVE BEEN REVISED TO REMAIN AS EXISTING LAND USE FOR THIS HEC-1 INPUT 	PAGE 3
LINE 111 LINE 111 112 113 114 115 116 117 118 119 120	ID ID ID ID ID ID ID ID ID ID ID	DU 3/4 HAVE BEEN REVISED TO REMAIN AS EXISTING LAND USE FOR THIS HEC-1 INPUT 	PAGE 3
LINE 111 LINE 111 112 113 114 115 116 117 118 119 120 121 121	ID ID ID ID ID ID ID ID ID ID ID	DU 3/4 HAVE BEEN REVISED TO REMAIN AS EXISTING LAND USE FOR THIS HEC-1 INPUT 	PAGE 3
LINE 111 LINE 111 112 113 114 115 116 117 118 119 120 121 122 123	ID ID ID ID ID ID ID ID ID ID ID ID ID	DU 3/4 HAVE BEEN REVISED TO REMAIN AS EXISTING LAND USE FOR THIS HEC-1 INPUT 	PAGE 3
LINE 111 LINE 111 112 113 114 115 116 117 118 119 120 121 122 122 123 124 125	ID ID ID ID ID ID ID ID ID ID ID ID	DU 3/4 HAVE BEEN REVISED TO REMAIN AS EXISTING LAND USE FOR THIS HEC-1 INPUT 1	PAGE 3
LINE 111 LINE 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 125 126 127 123 124 125 126 127 126 127 127 127 127 127 127 127 127	ID ID ID ID ID ID ID ID ID ID ID ID ID ID	DU 3/4 HAVE BEEN REVISED TO REMAIN AS EXISTING LAND USE FOR THIS HEC-1 INPUT 128910 INTERIM CONDITION. THIS IS AN INTERIM CONDITION MODEL WHICH INCLUDES ONSITE MODELING FOR THE FOLLOWING DEVELOPMENT UNITS WHICH HAVE HAD DETAILED MASTER PLANS PREPARED, INCLUDING: DU 8/9, 3S, AND 7N. THE REMAINING ONSITE IS CONTEMPLATED AS EXISTING LAND USE. MODEL REVISED BY: WOOD, PATEL & ASSOCIATES, INC. STEVE MCKEE, P.E. FILE PATH: R:\MESA PROVING GROUNDS\2016\164528\PROJECT SUPPORT\REPORTS\DRAINAGE\ DU 5-5N-6S MASTER PLAN\HYDROLOGY\DU56INT.DAT	PAGE 3
LINE LINE 111 112 113 114 115 116 117 118 119 120 121 122 122 122 123 124 125 126 127 128	ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID	DU 3/4 HAVE BEEN REVISED TO REMAIN AS EXISTING LAND USE FOR THIS HEC-1 INPUT 1	PAGE 3
LINE LINE 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 128 128 129 130	ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID	DU 3/4 HAVE BEEN REVISED TO REMAIN AS EXISTING LAND USE FOR THIS HEC-1 INPUT 1	PAGE 3
LINE LINE 111 112 113 114 115 116 117 118 119 120 121 122 122 122 123 124 125 126 127 128 128 128 129 130 131	ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID	DU 3/4 HAVE BEEN REVISED TO REMAIN AS EXISTING LAND USE FOR THIS HEC-1 INPUT 1245678910 INTERIM CONDITION. THIS IS AN INTERIM CONDITION MODEL WHICH INCLUDES ONSITE MODELING FOR THE FOLLOWING DEVELOPMENT UNITS WHICH HAVE HAD DETAILED MASTER PLANS PREPARED, INCLUDING: DU 8/9, 3S, AND 7N. THE REMAINING ONSITE IS CONTEMPLATED AS EXISTING LAND USE. MODEL REVISED BY: WOOD, PATEL & ASSOCIATES, INC. STEVE MCKEE, P.E. FILE PATH: R:MESA PROVING GROUNDS\2016\164528\PROJECT SUPPORT\REPORTS\DRAINAGE\ DU 5-5N-6S MASTER PLAN\HYDROLOGY\DU56INT.DAT FILE: DU6SINT.DAT MODEL REVISED: 10-1-2015 PROJECT: MASTER DRAINAGE REPORT FOR DU 6 SOUTH AT EASTMARK THIS MODEL IS AN EXEEPT OF THE FULL BUILD OUT MODEL. NO REFERENCE TO	PAGE 3
LINE LINE 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133	ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID	DU 3/4 HAVE BEEN REVISED TO REMAIN AS EXISTING LAND USE FOR THIS HEC-1 INPUT 1245678910 INTERIM CONDITION. THIS IS AN INTERIM CONDITION MODEL WHICH INCLUDES ONSITE MODELING FOR THE FOLLOWING DEVELOPMENT UNITS WHICH HAVE HAD DETAILED MASTER PLANS PREPARED, INCLUDING: DU 8/9, 3S, AND 7N. THE REMAINING ONSITE IS CONTEMPLATED AS EXISTING LAND USE. MODEL REVISED BY: WOOD, PATEL & ASSOCIATES, INC. STEVE MCKEE, P.E. FILE PATH: R:\MESA PROVING GROUNDS\2016\164528\PROJECT SUPPORT\REPORTS\DRAINAGE\ DU 5-5N-6S MASTER PLAN\HYDROLOGY\DU56INT.DAT FILE: DUSSINT.DAT MODEL REVISED: 10-1-2015 PROJECT: MASTER DRAINAGE REPORT FOR DU 6 SOUTH AT EASTMARK THIS MODEL IS AN EXERPT OF THE FULL BUILD OUT MODEL. NO REFERENCE TO OTHER MODELS IS REQUIRED TO RUN THIS MODEL.	PAGE 3
LINE LINE 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 133 134 135	ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID	DU 3/4 HAVE BEEN REVISED TO REMAIN AS EXISTING LAND USE FOR THIS HEC-1 INPUT 1245678910 INTERIM CONDITION. THIS IS AN INTERIM CONDITION MODEL WHICH INCLUDES ONSITE MODELING FOR THE FOLLOWING DEVELOPMENT UNITS WHICH HAVE HAD DETAILED MASTER PLANS PREPARED, INCLUDING: DU 8/9, 3S, AND 7N. THE REMAINING ONSITE IS CONTEMPLATED AS EXISTING LAND USE. MODEL REVISED BY: WOOD, PATEL & ASSOCIATES, INC. STEVE MCKEE, P.E. FILE PATH: R:\MESA PROVING GROUNDS\2016\164528\PROJECT SUPPORT\REPORTS\DRAINAGE\ DU 5-5N-6S MASTER PLAN\HYDROLOGY\DU56INT.DAT FILE: DUSSINT.DAT MODEL REVISED: 10-1-2015 PROJECT: MASTER DRAINAGE REPORT FOR DU 6 SOUTH AT EASTMARK THIS MODEL IS AN EXERPT OF THE FULL BUILD OUT MODEL. NO REFERENCE TO OTHER MODELS IS REQUIRED TO RUN THIS MODEL.	PAGE 3
LINE LINE 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136	ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID	DU 3/4 HAVE BEEN REVISED TO REMAIN AS EXISTING LAND USE FOR THIS HEC-1 INPUT 1245678910 INTERIM CONDITION. THIS IS AN INTERIM CONDITION MODEL WHICH INCLUDES ONSITE MODELING FOR THE FOLLOWING DEVELOPMENT UNITS WHICH HAVE HAD DETAILED MASTER PLANS PREPARED, INCLUDING: DU 8/9, 3S, AND 7N. THE REMAINING ONSITE IS CONTEMPLATED AS EXISTING LAND USE. MODEL REVISED BY: WOOD, PATEL & ASSOCIATES, INC. STEVE MCKEE, P.E. FILE PATH: R:WMESA PROVING GROUNDS\2016\164528\PROJECT SUPPORT\REPORTS\DRAINAGE\ DU 5-5N-6S MASTER PLAN\HYDROLOGY\DU56INT.DAT 	PAGE 3
LINE LINE 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138	ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID	DU 3/4 HAVE BEEN REVISED TO REMAIN AS EXISTING LAND USE FOR THIS HEC-1 INPUT 1245678910 INTERIM CONDITION. THIS IS AN INTERIM CONDITION MODEL WHICH INCLUDES ONSITE MODELING FOR THE FOLLOWING DEVELOPMENT UNITS WHICH HAVE HAD DETAILED MASTER PLANS PREPARED, INCLUDING: DU 8/9, 3S, AND 7N. THE REMAINING ONSITE IS CONTEMPLATED AS EXISTING LAND USE. MODEL REVISED BY: WOOD, PATEL & ASSOCIATES, INC. STEVE MCKEE, P.E. FILE PATH: R:WMESA PROVING GROUNDS\2016\164528\PROJECT SUPPORT\REPORTS\DRAINAGE\ DU 5-5N-6S MASTER PLAN\HYDROLOGY\DU56INT.DAT FILE: DUSSINT.DAT MODEL REVISED: 10-1-2015 PROJECT: MASTER DRAINAGE REPORT FOR DU 6 SOUTH AT EASTMARK THIS MODEL IS AN EXERPT OF THE FULL BUILD OUT MODEL. NO REFERENCE TO OTHER MODELS IS REQUIRED TO RUN THIS MODEL. MODEL REVISION DESCRIPTION: THIS MODEL IS AN EXERPT OF THE MODEL PROVIDED BY THE FLOOD CONTROL DISTRICT OF MARICOPA COUNTY (WS4-SEM.DAT). LAND USES FOR DU 65 AND PHASE 1 WITHIN PARCEL 10 OF DU 3/4 HAVE BEEN UPDATED TO RUS FAND	PAGE 3
LINE LINE 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 130 138 138 138 138 138 138 138 138	ID ID ID ID ID ID ID ID ID ID ID ID ID ID ID	DU 3/4 HAVE BEEN REVISED TO REMAIN AS EXISTING LAND USE FOR THIS HEC-1 INPUT 1	PAGE 3
LINE LINE 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 141 	ID ID ID ID ID ID ID ID ID ID ID ID	DU 3/4 HAVE BEEN REVISED TO REMAIN AS EXISTING LAND USE FOR THIS HEC-1 INPUT 1	PAGE 3
LINE LINE 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143	ID ID ID ID ID ID ID ID ID ID ID ID	DU 3/4 HAVE BEEN REVISED TO REMAIN AS EXISTING LAND USE FOR THIS HEC-1 INPUT 1245678910 INTERIM CONDITION. THIS IS AN INTERIM CONDITION MODEL WHICH INCLUDES ONSITE MODELING FOR THE FOLLOWING DEVELOPMENT UNITS WHICH HAVE HAD DETAILED MASTER PLANS PREPARED, INCLUDING: DU 8/9, 3S, AND 7N. THE REMAINING ONSITE IS CONTEMPLATED AS EXISTING LAND USE. MODEL REVISED BY: WOOD, PATEL & ASSOCIATES, INC. STEVE MCKEE, P.E. FILE PATH: R:\MESA PROVING GROUNDS\2016\164528\PROJECT SUPPORT\REPORTS\DRAINAGE\ DU 5-5N-6S MASTER PLAN\HYDROLOGY\DU56INT.DAT MODEL REVISED: 10-1-2015 PROJECT: MASTER DRAINAGE REPORT FOR DU 6 SOUTH AT EASTMARK THIS MODEL IS AN EXERPT OF THE FULL BUILD OUT MODEL. NO REFERENCE TO OTHER MODELS IS REQUIRED TO RUN THIS MODEL. MODEL REVISION DESCRIPTION: THIS MODEL IS AN EXERPT OF THE MODEL PROVIDED BY THE FLOOD CONTROL DISTRICT OF MARICOPA COUNTY (WS4-SEM.DAT). LAND USES FOR DU 6S AND PHASE 1 WITHIN PARCEL 10 OF DU 3/4 HAVE BEEN UPDATED TO REPERINCE DETAILED PLANNING. LAND USES FOR DU 5. FINE REMAINING DU 3/4, AND THE UNDEVELOPED PORTION OF DU 6N HAS BEEN REVISED TO REMAIN AS EXISTING LAND USE FOR THIS INTERIM CONDITION. THIS IS AN INTERIM CONDITION MODEL WHICH INCLUDES ONSITE MODELING FOR THE SOLLOWND DEVELOPMENT UNTS WHICH HAVE HAD DETAILED MASTER	PAGE 3
LINE LINE 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145	ID ID ID ID ID ID ID ID ID ID ID ID	DU 3/4 HAVE BEEN REVISED TO REMAIN AS EXISTING LAND USE FOR THIS HEC-1 INPUT 	PAGE 3
LINE LINE LINE 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 143 144 145 146	ID ID ID ID ID ID ID ID ID ID ID ID	DU 3/4 HAVE BEEN REVISED TO REMAIN AS EXISTING LAND USE FOR THIS HEC-1 INPUT 128	PAGE 3
LINE LINE 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148	ID ID ID ID ID ID ID ID ID ID ID ID	DU 3/4 HAVE BEEN REVISED TO REMAIN AS EXISTING LAND USE FOR THIS HEC-1 INPUT 128	PAGE 3
LINE LINE 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 144 144 145 146 147 148 199 190 190 190 190 190 190 190	ID	DU 3/4 HAVE BEEN REVISED TO REMAIN AS EXISTING LAND USE FOR THIS HEC-1 INPUT 128	PAGE 3
LINE LINE LINE 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 144 144 144 145 146 147 148 149 150 151 151	ID ID ID ID ID ID ID ID ID ID ID ID	DU 3/4 HAVE BEEN REVISED TO REMAIN AS EXISTING LAND USE FOR THIS HEC-1 INPUT 128	PAGE 3
LINE LINE LINE 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 139 140 141 142 144 144 145 166 177 188 199 120 121 122 123 124 125 126 127 128 129 130 131 135 136 137 138 139 140 141 142 144 144 145 146 147 148 199 120 121 122 123 124 125 126 127 128 139 140 141 142 144 145 146 147 148 149 155 155 155 155 155 155 155 15	ID ID ID ID ID ID ID ID ID ID	DU 3/4 HAVE BEEN REVISED TO REMAIN AS EXISTING LAND USE FOR THIS HEC-1 INPUT 1245678910 INTERIM CONDITION. THIS IS AN INTERIM CONDITION MODEL WHICH INCLUDES ONSITE MODELING FOR THE FOLLOWING DEVELOPMENT UNITS WHICH HAVE HAD DETAILED MASTER PLANS PREPARED, INCLUDING: DU 8/9, 3S, AND 7N. THE REMAINING ONSITE IS CONTEMPLATED AS EXISTING LAND USE. MODEL REVISED EY: WOOD, PATEL & ASSOCIATES, INC. STEVE MCKEE, P.E. FILE PATH: R:\MESA PROVING GROUNDS\2016\164528\PROJECT SUPPORT\REPORTS\DRAINAGE\ DU 5-5N-6S MASTER PLAN\HYDROLOGY\DU56INT.DAT MODEL REVISED: 10-1-2015 PROJECT: MASTER DRAINAGE REPORT FOR DU 6 SOUTH AT EASTMARK THIS MODEL IS AN EXERPT OF THE FULL BUILD OUT MODEL. NO REFERENCE TO OTHER MODELS IS REQUIRED TO RUN THIS MODEL. MODEL REVISION DESCRIPTION: THIS MODEL IS AN EXERPT OF THE FULL BUILD OUT MODEL. NO REFERENCE TO OTHER MODELS IS REQUIRED TO RUN THIS MODEL. MODEL REVISION DESCRIPTION: THIS MODEL IS AN EXERPT OF THE MODEL PROVIDED BY THE FLOOD CONTROL DISTRICT OF MARICOPA COUNTY (WS4-SEM.DAT). LAND USES FOR DU 6S AND PHASE 1 WITHIN PARCEL 10 OF DU 3/4 HAVE BEEN UPDATED TO REFLECT DETAILED PLANNING. LAND USES FOR DU 52, THE REMAINING DU 3/4, AND THE UNDEVELOPED PORTION OF DU 6N HAS BEEN REVISED TO REMAIN AS EXISTING LAND USE FOR THIS INTERIM CONDITION. THIS IS AN INTERIM CONDITION MODEL WHICH HAVE HAD DETAILED MASTER PLANS PROVING EVELOPMENT UNITS WHICH HAVE HAD DETAILED MASTER PLANS PROPARED, INCLUDING: DU 3/9, 33, AND 7N. THE REMAINING ONSITE IS CONTEMPLATED AS EXISTING LAND USE. MODEL REVISED BY: WOOD, PATEL & ASSOCIATES, INC. STEVE MCKEE, E.I.T. FILE PATH: R:MESA PROVING GROUNDS\2015\154382\PROJECT SUPPORT\REPORTS\DRAINAGE\ DUG S MASTER PLANNPLOCONDICUSUDED	PAGE 3
LINE LINE LINE 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 154 154 154 154 155 155 154 155 155	ID ID ID ID ID ID ID ID ID ID ID ID	DU 3/4 HAVE BEEN REVISED TO REMAIN AS EXISTING LAND USE FOR THIS HEC-1 INPUT 	PAGE 3
LINE LINE 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 155 156 154 155	ID ID ID ID ID ID ID ID ID ID ID ID	DU 3/4 HAVE BEEN REVISED TO REMAIN AS EXISTING LAND USE FOR THIS HEC-1 INPUT 	PAGE 3
LINE LINE 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 133 134 135 136 137 138 139 130 140 141 145 166 157 152 155 155 156 157 158 158 156 157 158 156 157 158 156 157 158 158 158 156 157 158 158 158 158 158 158 158 158	ID ID ID ID ID ID ID ID ID ID ID ID	DU 3/4 HAVE BEEN REVISED TO REMAIN AS EXISTING LAND USE FOR THIS HEC-1 INPUT 12345678910 INTERIM CONDITION. THIS IS AN INTERIM CONDITION MODEL WHICH INCLUDES ONSITE MODELING FOR THE FOLLOWING DEVELOPMENT UNITS WHICH HAVE HAD DETAILED MASTER FLAINS PREPARED, INCLUDING DU 8/9, 35, AND 7N. THE REMAINING ONSITE IS CONTEMPLATED AS EXISTING LAND USE. MODEL REVISED BY: WOOD, PATEL & ASSOCIATES, INC. STEVE MCKEP, P.E. FILE PATH: R:\MESA PROVING GROUNDS\2016\164528\PROJECT SUPPORT\REPORTS\DRAINAGE\ DU 5-5N-65 MASTER FLAN\HYDROLOGY\DU55INT.DAT MODEL REVISED: 10-1-2015 PROJECT: MASTER DRAINAGE REPORT FOR DU 6 SOUTH AT EASTMARK THIS MODEL IS AN EXERPT OF THE FULL BUILD OUT MODEL. NO REFERENCE TO OTHER MODELS IS REQUIRED TO RUN THIS MODEL. MODEL REVISED: 10-1000 DI STRICT OF MARICOPA COUNTY (WS4-SEM.DAT). LAND USES FOR DU 6S AND PHASE I WITHIN PARCEL 10 OF DU 3/4 HAVE BEEN UPDATED TO REFLECT DETAILED PLANKING. LAND USES FOR DU 55. THE REMAINING DU 3/4, AND THE UNDEVELOPED PORTION OF DU 6N HAS BEEN REVISED TO REMAIN AS EXISTING LAND USE FOR THIS INTERM CONDITION. THIS IS AN INTERIM CONDITION MODEL WHICH INCLUDES ONSITE MODELING FILES IS AN INTERIM CONDITION MODEL WHICH INCLUDES ONSITE MODELING FILE DUSEIND DESCRIPTION: MODEL REVISED BESCHIPTION: MODEL REVISED BESCHIPTION DU 6/9, 35, AND 7N. THE REMAINING ON SITE IS CONTEMPLATED AS EXISTING LAND USES. MODEL REVISED BY: MODEL REVISED BY: MODEL REVISED BY: MODEL REVISED MEN MODEL REVISE	PAGE 3

160	ID		
161	TD	PROJECT: MASTER DRAINAGE REPORT FOR DU 5 EAST AT EASTMARK	
163	ID	THIS MODEL IS AN EXERPT OF THE FULL BUILD OUT MODEL. NO REFERENCE TO	
164	ID ID	OTHER MODELS IS REQUIRED TO RUN THIS MODEL.	
1	10	HEC-1 INPUT	PAGE 4
LINE	ID.	1	
166	ID	MODEL REVISION DESCRIPTION:	
167	ID		
168	ID	THIS MODEL IS AN EXERPT OF THE MODEL PROVIDED BY THE FLOOD CONTROL	
169	TD	DISTRICT OF MARICOPA COUNTY (WS4-SEM.DAT). LAND USE FOR DU 5E HAS CHANGED FROM COLF TO INDUSTRIAL APPEAS THAT DEPUDUISLY DRAINED TO COLF	
170	ID	WHERE 100-YEAR, 24-HOUR RETENTION WAS PROVIDED WILL NOW BE REQUIRED TO	
172	ID	SELF RETAIN RETENTION VOLUME FROM THEIR SITE FOR THE 100-YEAR, 24-HOUR	
173	ID	STORM PEAK FLOWS HAVE REMAINED THE SAME. THIS IS AN INTERIM CONDITION	
174	ID TD	MODEL WHICH INCLUDES ONSITE MODELING FOR AREAS THAT HAVE HAD DETAILED MASTER PLANS PREPARED AND THE REMAINING ONSITE IS CONTEMPLATED AS	
176	ID	EXISTING LAND USE.	
177	ID		
178	ID	MODEL REVISED BY:	
180	TD	DANIEI, MATTHEWS, P. E.	
181	ID		
182	ID	FILE PATH:	
183	ID	R:\MESA PROVING GROUNDS\2014\144173\PROJECT SUPPORT\REPORTS\DRAINAGE\	
185	ID	DU DE DRATNAGE MASIEK FLAN (HIDROLOGI (DUDEINI.DAI	
186	ID	***************************************	
187	ID		
188	TD	FILE: EMDUSE.DAT	
190	ID	MODEL REVISED: 04-18-2014	
191	ID		
192	ID	PROJECT: EASTMARK MASTER DRAINAGE UPDATE (FOR DEVELOPMENT UNIT 5 EAST)	
193	ID	THIS IS A POST DEVELOPED MODEL REVISION TO REFLECT PLANNED LAND USES	
195	ID	FOR DEVELOPMENT UNIT 5 EAST (DU SE).	
196	ID		
197	ID	MODEL REVISION DESCRIPTION:	
199	TD	THIS MODEL IS AN EXERPT OF THE MODEL PROVIDED BY THE FLOOD CONTROL	
200	ID	DISTRICT OF MARICOPA COUNTY (WS4-SEM.DAT). LAND USE FOR DU 5E HAS	
201	ID	CHANGED FROM GOLF TO INDUSTRIAL. AREAS THAT PREVIOUSLY DRAINED TO GOLF	
202	ID	WHERE 100-YEAR, 24-HOUR RETENTION WAS PROVIDED WILL NOW BE REQUIRED TO	
203	TD	STORM PEAK FLOWS HAVE REMAINED THE SAME. THE REMAINING PORTION OF LAND	
205	ID	THAT WAS ASSOCIATED WITH GOLF HAS BEEN REVISED TO RESIDENTIAL USE.	
206	ID		
207	ID	MODEL REVISED BY:	
203	ID	DANIEL MATTHEWS, P.E.	
210	ID		
211	ID	FILE PATH:	
212	ID	R:\MESA PROVING GROUNDS\2014\144173\PROJECT SUPPORT\REPORTS\DRAINAGE\	
213	ID	EASIMARK OVERALL MASIEK DRAINAGE OFDATE (HIDROLOGI (FROFOSED (EMDOJE.DAI	
215	ID	***************************************	
216	ID		
217	TD	FILE: EMDU34.DAT	
219	ID	MODEL REVISED: 04-14-2014	
220	ID		DAGE
1			PAGE 5
LINE	ID	1	
221	ID	PROJECT: EASTMARK MASTER DRAINAGE UPDATE FOR DEVELOPMENT UNIT 3/4	
222	UT UT	THIS IS A POST DEVELOPED MODEL REVISION TO REFLECT PLANNED LAND USES	
224	ID	FOR DEVELOPMENT UNIT 3/4 (DU 3/4).	
225	ID		
226	ID	MODEL REVISION DESCRIPTION:	
227	ID	THIS MODEL IS AN EXERPT OF THE MODEL PROVIDED BY THE FLOOD CONTROL	
229	ID	DISTRICT OF MARICOPA COUNTY (WS4-SEM.DAT). LAND USE FOR DU 3/4 HAS BEEN	
230	ID	REVISED TO REFLECT MORE DETAILED PLANNING. MINOR ADJUSTMENTS TO LAND	
231	TD	USES OUTSIDE OF DU 3/4 HAVE BEEN MADE. ADDITIONALLY WATERSHED BOUNDARIES HAVE BEEN REVISED TO REFLECT A CONCEPTUAL MASS GRADE DLAM	
232	ID	PROVIDED TO WOOD/PATEL BY A CONSULTANT OF THE DEVELOPER DMB MESA	
234	ID	PROVING GROUNDS LLC.	
235	ID		
236	TD	MODEL REVISED BY: WOOD DATEL & ASSOCIATES INC	
238	ID	DANIEL MATTHEWS, P.E.	
239	ID		
240	ID	FILE PATH:	
241 242	ID	EASTMARK OVERALL DRAINAGE MASTER UPDATE/HYDROLOGY/PROPOSED/EMDU34 DAT	
243	ID		
244	ID	***************************************	
245	ID	FILE: EMDU3S.DAT	
240	ID	MODEL REVISED: 12-11-2013	
248	ID		
249	ID	PROJECT: EASTMARK MASTER DRAINAGE UPDATE FOR DEVELOPMENT UNIT 3 SOUTH	
250	ID	THIS IS & DOST DEVELOPED MODEL PEVISION TO DEPEND TAND TAND TOPO	
251	ID	FOR DEVELOPMENT UNIT 3 SOUTH (DU-3S).	
253	ID		
254	ID	MODEL REVISION DESCRIPTION:	
255	ID	THIS MODEL IS AN EXERPT OF THE MODEL DROVIDED BY THE FLOOD CONTRACT	
250	ID	DISTRICT OF MARICOPA COUNTY (WS4-SEM.DAT). LAND USES FOR DU-3S ARE	
258	ID	CONSISTENT WITH THE PREVIOUS MODEL (EMDU89.DAT) THEREFORE RESULTING	

	239		PEAK FLOWS HAVE REMAINED THE SAME.	
	260	ID		
	261	ID	MODEL REVISED BY:	
	262	ID	WOOD, PATEL & ASSOCIATES, INC.	
	263	ID	DANIEL MATTHEWS, P.E.	
	264	ID		
	265	ID	FILE PATH:	
	266	ID	R:\MESA PROVING GROUNDS\2011\113697.08\PROJECT SUPPORT\REPORTS\	
	267	ID	EASTMARK OVERALL DRAINAGE MASTER UPDATE\HYDROLOGY\PROPOSED\EMDU3S.DAT	
	268	ID		
	269	ID '	***************************************	
	270	ID		
	271	ID	FILE: EMDU89.DAT	
	272	ID		
	273	ID	MODEL REVISED: 1-22-2013	
	274	ID		
_	275	ID	PROJECT: EASTMARK 646	
1			HEC-1 INPUT	PAGE 6
	LINE	1D	1	
	0.7.6			
	276	ID	THE TALL DOT DEVELOPED WORK DEVELOPEN TO DEFE TAT UPDATED DI NUMBER	
	277	ID	FIGURE OPPORT INTER SCO (DU SCO)	
	270	ID	FOR DEVELOPMENT UNITS 6%9 (DU 6%9).	
	279	ID	MODEL DEVICTON DECODIDATION.	
	200	TD	MODEL REVISION DESCRIPTION.	
	201	ID	THIS MODEL IS AN EVEDDE OF THE MODEL DROUTDED BY THE FLOOD CONTROL	
	202	ID	DISTRICT OF MADICODE CONTRY (WCA_SEM DAT) ONSTTE MATEDUEDS WERE	
	284	TD	IDDATED TO PERFOR CURPENT DIAN FOR DEVELOPMENT INTER 8. 9	
	204	ID	OFDATED TO REFLECT CORRENT FLAN FOR DEVELOPMENT UNITS 5 & 9.	
	205	10	MODEL REVISED BY:	
	287	1D TD	WOOD DATEL & ASSOCIATES INC	
	207	10	DARREN E SMITH D E	
	200	10	Sincer B. Spille, F.B.	
	209	1D TD	FILE DATH:	
	291	TD	R:/MESA DROVING GROINDS/2012/123835/DROIFCT SUDDORT/DEDORTS/	
	291	ID	DRAINACE/UVDBOIOCV/DRODOCED/EMDING DAT	
	292	TD	DRAINAGE (HIDROLOGI (FROFOSED (EMDOS).DAI	
	294	TD	*****	
	295	TD		
	296	TD	FILE: MPGDU7 DAT	
	297	TD	FILE, FEGDO, DAT	
	297	ID	MODEL REVISED. 00-07-2011	
	290	TD	NODEL REVISED. 09-07-2011	
	300	TD	DRATECT: MESA DRAVING CRAINING	
	301	TD	PROPERTY MEDA PROVING GROUNDS	
	302	TD	THIS MODEL SHOULD REPLACE WS4-SEM DAT IN THE HEC-1 RIN SECURICE SPECIFIE	
	303	TD	BELOW REFERENCING WS2-NEW DSS IS STILL REQUIRED	
	304	TD		
	305	TD	THIS IS & POST DEVELOPED MODEL REVISION TO REFLECT HEDATED PLANNING	
	306	TD	FOR DEVELOPMENT UNIT 7 (DU7) PROVIDED BY ARIZONA LAND DESIGN ON 09/02/201	
	307	TD	09/02/2011	
	308	TD		
	309	TD	MODEL REVISION DESCRIPTION:	
	310	TD		
	311	TD	THIS MODEL IS AN EXERPT OF THE MODEL PROVIDED BY THE FLOOD CONTROL	
	312	ID	DISTRICT OF MARICOPA COUNTY (WS4-SEM.DAT). ONSITE WATERSHEDS WERE	
	313	TD	UPDATED TO REFLECT A GRADING PLAN PROVIDED BY LD TEAM ON 8/30/2011.	
	314	TD	MODELING OF THE POWERLINE FLOODWAY HAS BEEN UPDATED TO REFLECT THE	
	315	ID	EXISTING SECTIONS AND SLOPE PER AS-BUILT DRAWINGS ACROSS THE MPG	
	316	ID	SITE.	
	317	ID		
	318	ID	MODEL REVISED BY:	
	319	ID	WOOD, PATEL & ASSOCIATES, INC.	
	320	ID	DANIEL W. MATTHEWS. E.I.T.	
	321	ID		
	322	ID	FILE PATH:	
	323		R:\MESA PROVING GROUNDS\2011\113697\PROJECT SUPPORT\REPORTS\	
		ID		
	324	ID ID	DRAINAGE\HYDROLOGY\MPGDU7.DAT	
	324 325	ID ID ID	DRAINAGE\HYDROLOGY\MPGDU7.DAT	
	324 325 326	ID ID ID ID	DRAINAGE\HYDROLOGY\MPGDU7.DAT	
	324 325 326 327	ID ID ID ID ID	DRAINAGE\HYDROLOGY\MPGDU7.DAT	
	324 325 326 327 328	ID ID ID ID ID ID	DRAINAGE\HYDROLOGY\MPGDU7.DAT	
	324 325 326 327 328 329	ID ID ID ID ID ID	DRAINAGE\HYDROLOGY\MPGDU7.DAT	
	324 325 326 327 328 329 330	ID ID ID ID ID ID ID	DRAINAGE\HYDROLOGY\MPGDU7.DAT	
1	324 325 326 327 328 329 330	ID ID ID ID ID ID ID	DRAINAGE\HYDROLOGY\MPGDU7.DAT FILE: MPG20RT2.DAT HEC-1 INPUT	PAGE 7
1	324 325 326 327 328 329 330	ID ID ID ID ID ID ID	DRAINAGE\HYDROLOGY\MPGDU7.DAT FILE: MPG20RT2.DAT HEC-1 INPUT	PAGE 7
1	324 325 326 327 328 329 330 LINE	ID ID ID ID ID ID ID	DRAINAGE\HYDROLOGY\MPGDU7.DAT FILE: MPG20RT2.DAT HEC-1 INPUT 12345678910	PAGE 7
1	324 325 326 327 328 329 330 LINE	ID ID ID ID ID ID ID ID	DRAINAGE\HYDROLOGY\MPGDU7.DAT FILE: MPG20RT2.DAT HEC-1 INFUT 12345678910	PAGE 7
1	324 325 326 327 328 329 330 LINE 331	ID ID ID ID ID ID ID ID	DRAINAGE\HYDROLOGY\MPGDU7.DAT FILE: MPG20RT2.DAT HEC-1 INPUT 12345678910 MODEL REVISED: 04-25-2011	PAGE 7
1	324 325 326 327 328 329 330 LINE 331 332	ID ID ID ID ID ID ID ID ID ID	DRAINAGE\HYDROLOGY\MPGDU7.DAT FILE: MPG20RT2.DAT HEC-1 INPUT 12345678910 MODEL REVISED: 04-25-2011	PAGE 7
1	324 325 326 327 328 329 330 LINE 331 332 333	ID ID ID ID ID ID ID ID ID ID	DRAINAGE\HYDROLOGY\MPGDU7.DAT FILE: MPG20RT2.DAT HEC-1 INPUT 12345678910 MODEL REVISED: 04-25-2011 PROJECT: MESA PROVING GROUNDS	PAGE 7
1	324 325 326 327 328 329 330 LINE 331 332 333 334 334	ID ID ID ID ID ID ID ID ID ID ID ID	DRAINAGE\HYDROLOGY\MPGDU7.DAT FILE: MPG20RT2.DAT HEC-1 INPUT 	PAGE 7
1	324 325 326 327 328 329 330 LINE 331 332 333 334 335	ID ID ID ID ID ID ID ID ID ID ID ID ID	DRAINAGE\HYDROLOGY\MPGDU7.DAT FILE: MPG20RT2.DAT HEC-1 INPUT 12345678910 MODEL REVISED: 04-25-2011 PROJECT: MESA PROVING GROUNDS THIS MODEL SHOULD REPLACE WS4-SEM.DAT IN THE HEC-1 RUN SEQUENCE SPECIFIE DEPLOYED REPORTED REPLACE WS4-SEM.DAT IN THE HEC-1 RUN SEQUENCE SPECIFIE DEPLOYED REPORTED REPLACE WS4-SEM.DAT IN THE HEC-1 RUN SEQUENCE SPECIFIE	PAGE 7
1	324 325 326 327 328 329 330 LINE 331 332 333 334 335 335 336 337	ID ID ID ID ID ID ID ID ID ID ID ID ID I	DRAINAGE\HYDROLOGY\MPGDU7.DAT FILE: MPG20RT2.DAT HEC-1 INPUT 12345678910 MODEL REVISED: 04-25-2011 PROJECT: MESA PROVING GROUNDS THIS MODEL SHOULD REPLACE WS4-SEM.DAT IN THE HEC-1 RUN SEQUENCE SPECIFIE BELOW. REFERENCING WS2-NEM.DSS IS STILL REQUIRED.	PAGE 7
1	324 325 326 327 328 329 330 LINE 331 332 333 334 335 336 337 320	ID ID ID ID ID ID ID ID ID ID ID ID ID I	DRAINAGE\HYDROLOGY\MPGDU7.DAT FILE: MPG20RT2.DAT HEC-1 INPUT 12345678910 MODEL REVISED: 04-25-2011 PROJECT: MESA PROVING GROUNDS THIS MODEL SHOULD REPLACE WS4-SEM.DAT IN THE HEC-1 RUN SEQUENCE SPECIFIE BELOW. REFERENCING WS2-NEM.DSS IS STILL REQUIRED.	PAGE 7
1	324 325 326 327 328 329 330 LINE 331 332 333 334 335 336 337 338 339	ID ID ID ID ID ID ID ID ID ID ID ID ID I	DRAINAGE\HYDROLOGY\MPGDU7.DAT FILE: MPG20RT2.DAT HEC-1 INPUT 12345678910 MODEL REVISED: 04-25-2011 PROJECT: MESA PROVING GROUNDS THIS MODEL SHOULD REPLACE WS4-SEM.DAT IN THE HEC-1 RUN SEQUENCE SPECIFIE BELOW. REFERENCING WS2-NEM.DSS IS STILL REQUIRED. THIS IS A 100-YEAR, 2-HOUR RETENTION SCENARIO MODEL USING THES JONGE COMMERCIAL SECE AND ISK DU JAND DIAN PROJUDED	PAGE 7
1	324 325 326 327 328 329 330 LINE 331 332 333 334 335 336 337 338 339 340	ID ID ID ID ID ID ID ID ID ID ID ID ID I	DRAINAGE\HYDROLOGY\MPGDU7.DAT FILE: MPG20RT2.DAT HEC-1 INPUT 	PAGE 7
1	324 325 326 327 328 329 330 LINE 331 332 333 334 335 336 337 338 339 340 341	ID ID ID ID ID ID ID ID ID ID ID ID ID I	DRAINAGE \HYDROLOGY \MPGDU7.DAT FILE: MPG20RT2.DAT HEC-1 INPUT 12345678910 MODEL REVISED: 04-25-2011 PROJECT: MESA PROVING GROUNDS THIS MODEL SHOULD REPLACE WS4-SEM.DAT IN THE HEC-1 RUN SEQUENCE SPECIFIE BELOW. REFERENCING WS2-NEM.DSS IS STILL REQUIRED. THIS IS A 100-YEAR, 2-HOUR RETENTION SCENARIO MODEL USING THE ZOMSF COMMERCIAL SPACE AND 15K DU LAND PLAN PROVIDED BY SWABACK PARTNERS ON 12/12/07.	PAGE 7
1	324 325 326 327 328 329 330 LINE 331 332 333 334 335 336 337 338 339 340 340 341	ID ID ID ID ID ID ID ID ID ID ID ID ID I	DRAINAGE \HYDROLOGY \MPGDU7.DAT FILE: MPG20RT2.DAT HEC-1 INPUT 	PAGE 7
1	324 325 326 327 328 329 330 LINE 331 332 333 334 335 336 337 338 339 340 341 342 342	ID ID ID ID ID ID ID ID ID ID ID ID ID I	DRAINAGE \HYDROLOGY \MPGDU7.DAT FILE: MPG20RT2.DAT HEC-1 INPUT 12345678910 MODEL REVISED: 04-25-2011 PROJECT: MESA PROVING GROUNDS THIS MODEL SHOULD REPLACE WS4-SEM.DAT IN THE HEC-1 RUN SEQUENCE SPECIFIE BELOW. REFERENCING WS2-NEM.DSS IS STILL REQUIRED. THIS IS A 100-YEAR, 2-HOUR RETENTION SCENARIO MODEL USING THE 20MSF COMMERCIAL SPACE AND 15K DU LAND PLAN PROVIDED BY SWABACK PARTNERS ON 12/12/07. MODEL REVISION DESCRIPTION:	PAGE 7
1	324 325 326 327 328 329 330 LINE 331 332 333 334 335 336 337 338 339 340 341 342 343	ID ID ID ID ID ID ID ID ID ID ID ID ID I	DRAINAGE HYDROLOGY MPGDUT.DAT FILE: MPG20RT2.DAT HEC-1 INPUT 	PAGE 7
1	324 325 326 327 328 329 330 LINE 331 332 333 334 335 336 337 338 339 340 341 342 342 343	ID ID ID ID ID ID ID ID ID ID ID ID ID I	DRAINAGE \HYDROLOGY\MPGDU7.DAT FILE: MPG20RT2.DAT HEC-1 INPUT 	PAGE 7
1	324 325 326 327 328 329 330 LINE 331 332 333 334 335 336 337 338 339 340 341 341 341 342 343	ID ID ID ID ID ID ID ID ID ID ID ID ID I	DRAINAGE \HYDROLOGY\MPGDU7.DAT FILE: MPG20RT2.DAT HEC-1 INPUT 12345678910 MODEL REVISED: 04-25-2011 PROJECT: MESA PROVING GROUNDS THIS MODEL SHOULD REPLACE WS4-SEM.DAT IN THE HEC-1 RUN SEQUENCE SPECIFIE BELOW. REFERENCING WS2-NEM.DSS IS STILL REQUIRED. THIS IS A 100-YEAR, 2-HOUR RETENTION SCENARIO MODEL USING THE 20MSF COMMERCIAL SPACE AND 15K DU LAND PLAN PROVIDED BY SWABACK PARTNERS ON 12/12/07. MODEL REVISION DESCRIPTION: THIS MODEL IS AN EXERPT OF THE MODEL PROVIDED BY THE FLOOD CONTROL DISTRICT OF MARICOPA COUNTY (WS4-SEM.DAT). ONSITE WATERSHEDS 01 AND 20 WERE UNDATED TO DEFENCE THE INCORDERATION OR THE FLOOD CONTROL DISTRICT OF MARICOPA COUNTY (WS4-SEM.DAT). ONSITE WATERSHEDS 01 AND 20 WERE UNDATED TO DEFENCE THE INCORDERATION OR THE FLOOD CONTROL DISTRICT OF MARICOPA COUNTY (WS4-SEM.DAT). ONSITE WATERSHEDS 01 AND 20 WERE UNDATED TO DEFENCE THE INCORDERATION OR OF THE FLOOD CONTROL DISTRICT OF MARICOPA COUNTY (WS4-SEM.DAT). ONSITE WATERSHEDS 01 AND 20 WERE UNDATED TO DEFENCE THE INCORDERATION OR THE FLOOD CONTROL DISTRICT OF MARICOPA COUNTY (WS4-SEM.DAT). ONSITE WATERSHEDS 01 AND 20 WERE UNDATED TO DEFENCE THE INCORDERATION OR OF THE SUDER SOUND OF THE	PAGE 7
1	324 325 326 327 328 330 LINE 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347	ID ID ID ID ID ID ID ID ID ID ID ID ID I	DRAINAGE \HYDROLOGY \MPGDU7.DAT FILE: MPG20RT2.DAT HEC-1 INPUT 	PAGE 7
1	324 325 326 327 328 329 330 LINE 331 332 333 334 335 336 337 338 339 340 341 342 342 343 344 345 346 347 348	ID ID ID ID ID ID ID ID ID ID ID ID ID I	DRAINAGE \HYDROLOGY\MPGDU7.DAT FILE: MPG20RT2.DAT HEC-1 INPUT 12345678910 MODEL REVISED: 04-25-2011 PROJECT: MESA PROVING GROUNDS THIS MODEL SHOULD REPLACE WS4-SEM.DAT IN THE HEC-1 RUN SEQUENCE SPECIFIE BELOW. REFERENCING WS2-NEM.DSS IS STILL REQUIRED. THIS IS A 100-YEAR, 2-HOUR RETENTION SCENARIO MODEL USING THE 20MSF COMMERCIAL SPACE AND 15K DU LAND PLAN PROVIDED BY SWABACK PARTNERS ON 12/12/07. MODEL REVISION DESCRIPTION: THIS MODEL IS AN EXERPT OF THE MODEL PROVIDED BY THE FLOOD CONTROL DISTRICT OF MARICOPA COUNTY (WS4-SEM.DAT). ONSITE WATERSHEDS 01 AND 20 WERE UPDATED TO REFLECT THE INCORPORATION OF THE FIRST SOLAR SITE IN THE NORTHEAST CORNER OF DU-6. WATERSHED 02 WAS SPLIT INTO 02A AND 02B	PAGE 7
1	324 325 326 327 328 330 LINE 331 332 333 334 335 336 337 338 339 340 341 341 342 343 344 344 345 344 344 344 344 344 344	ID ID ID ID ID ID ID ID ID ID ID ID ID I	DRAINAGE \HYDROLOGY\MPGDU7.DAT FILE: MPG20RT2.DAT HEC-1 INPUT 	PAGE 7
1	324 325 326 327 328 329 330 LINE 331 332 333 334 335 336 337 338 339 340 341 342 342 343 344 345 346 346 347 348 349 350	ID ID ID ID ID ID ID ID ID ID ID ID ID I	DRAINAGE \HYDROLOGY\MPGDU7.DAT FILE: MPG20RT2.DAT HEC-1 INPUT 	PAGE 7
1	324 325 326 327 328 329 330 LINE 331 332 333 334 334 335 336 337 338 339 340 341 341 342 343 344 345 346 347 348 347 348 349 350	ID ID ID ID ID ID ID ID ID ID ID ID ID I	DRAINAGE \HYDROLOGY\MPGDU7.DAT FILE: MPG20RT2.DAT HEC-1 INPUT 	PAGE 7
1	324 325 326 327 328 329 330 LINE 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 344 345 346 347 348 349 350 351 352	ID ID ID ID ID ID ID ID ID ID ID ID ID I	DRAINAGE \HYDROLOGY\MPGDU7.DAT FILE: MPG20RT2.DAT HEC-1 INPUT 	PAGE 7
1	324 325 326 327 328 329 330 LINE 331 332 333 334 335 336 336 337 338 339 340 341 341 342 341 342 343 340 341 342 343 344 345 346 347 348 349 350 351 352 352 352	ID ID ID ID ID ID ID ID ID ID ID ID ID I	DRAINAGE \HYDROLOGY\MPGDUT.DAT FILE: MPG20RT2.DAT HEC-1 INPUT 	PAGE 7
1	324 325 326 327 328 329 330 LINE 331 332 333 334 335 336 337 338 339 340 341 341 342 343 344 345 344 345 344 344 345 344 345 344 345 346 350 351 352 353 353	ID ID ID ID ID ID ID ID ID ID ID ID ID I	DRAINAGE \HYDROLOGY\MPGDU7.DAT FILE: MPG20RT2.DAT HEC-1 INPUT 	PAGE 7
1	324 325 326 327 328 329 330 LINE 331 332 333 334 335 336 337 338 339 340 341 342 343 342 342 343 344 345 346 347 345 346 347 345 345 345 355	ID ID ID ID ID ID ID ID ID ID	DRAINAGE \HYDROLOGY\MPGDU7.DAT FILE: MPG20RT2.DAT HEC-1 INPUT 	PAGE 7
1	324 325 326 327 328 329 330 LINE 331 332 333 334 335 336 337 338 339 340 341 341 342 343 344 345 346 347 348 345 346 347 348 345 351 352 355 355 355	ID ID ID ID ID ID ID ID ID ID ID ID ID I	DRAINAGE HYDROLOGY MPGDU7.DAT FILE: MPG20RT2.DAT HEC-1 INPUT 	PAGE 7
1	324 325 326 327 328 329 330 LINE 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 344 345 346 347 348 346 347 348 349 350 351 355 356 357	ID ID ID ID ID ID ID ID ID ID ID ID ID I	DRAINAGE HYDROLOGY MPGDUT.DAT FILE: MPG20RT2.DAT HEC-1 INPUT 	PAGE 7

358 359	ID TD	DRAINAGE\HYDROLOGY\POST-DEVELOPED 100YR2HR RETENTION MODEL\	
360	ID		
361 362	ID		
363 364	ID ID	FILE: MPG20RT2.DAT	
365	ID	MODEL REVISED: 09-16-08	
366 367	ID	PROJECT: MESA PROVING GROUNDS	
368 369	ID TD	THIS MODEL SHOULD REPLACE WS4-SEM.DAT IN THE HEC-1 RUN SEQUENCE SPECIFIE	
370	ID	BELOW. REFERENCING WS2-NEM.DSS IS STILL REQUIRED.	
371 372	ID	THIS IS A 100-YEAR, 2-HOUR RETENTION SCENARIO MODEL USING	
373 374	ID TD	THE 20MSF COMMERCIAL SPACE AND 15K DU LAND PLAN PROVIDED BY SWABACK PARTNERS ON 12/12/07.	
375	ID	NODEL DEVICION DECODEDETON.	
376	ID	MODEL REVISION DESCRIPTION.	
378 379	ID ID	THIS MODEL IS AN EXERPT OF THE MODEL PROVIDED BY THE FLOOD CONTROL DISTRICT OF MARICOPA COUNTY (WS4-SEM.DAT). ONSITE WATERSHEDS 01, 02,	
380	ID	03, AND 06 WERE UPDATED TO REFLECT THE CURRENT GOLF COURSE	
382	ID	CONFIDENTION.	
383 384	ID ID	MODEL REVISED BY: WOOD, PATEL & ASSOCIATES, INC.	
385	ID	DANIEL W. MATTHEWS, E.I.T.	DAGE 8
1		NEC-1 INPOI	FAGE 0
LINE	ID	1	
386	ID	ידים קודים.	
388	ID	R:\MESA PROVING GROUNDS\2006\062753\PROJECT SUPPORT\HYDRO\MDR-20-15 LAND	
389 390	ID ID	PLAN\2ND SUBMITTAL(COM)\HYDROLOGY\MPG2URT2.DAT	
391 392	ID TD	*****	
393	ID	FILE: MPG20RT2.DAT	
394 395	ID	MODEL REVISED: 05-15-08	
396 397	ID ID	PROJECT: MESA PROVING GROUNDS	
398	ID		
400	ID ID	MODEL REVISION DESCRIPTION:	
401	ID ID	THIS MODEL SHOULD REPLACE WS4-SEM.DAT IN THE HEC-1 RUN SEQUENCE SPECIFIE BELOW REFERENCING WS2-NEM DSS IS STILL REQUIRED	
403	ID		
404 405	ID	THIS IS A 100-YEAR, 2-HOUR RETENTION SCENARIO MODEL USING	
406	ID ID	THE 20MSF COMMERCIAL SPACE AND 15K DU LAND PLAN PROVIDED BY SWARACK PARTNERS ON 12/12/07	
408	ID		
409	ID	THIS MODEL IS AN EXERPT OF THE MODEL PROVIDED BY THE FLOOD CONTROL	
411 412	ID ID	DISTRICT OF MARICOPA COUNTY (WS4-SEM.DAT). WATERSHED 79A WAS UPDATED AS REQUESTED BY FLOOD CONTROL DISTRICT OF MARICOPA COUNTY TO REDUCE THE	
413	ID	PERCENT IMPERVIOUS VALUE FROM 80% TO 0% TO MATCH THE LAND USE AS MODELED	
415	ID	WITHIN THE EAST MESA ADMF.	
416 417	ID ID	MODEL REVISED BY: WOOD, PATEL & ASSOCIATES, INC.	
418	ID	DANIEL W. MATTHEWS, E.I.T.	
419	ID	FILE PATH:	
421 422	ID ID	R:\MESA PROVING GROUNDS\2006\062753\PROJECT SUPPORT\HYDRO\MDR-20-15 LAND PLAN\2ND SUBMITTAL\POST-DEVELOPED 100YR2HR RETENTION MODEL (MPG20RT2)\	
423	ID	MPG20RT2.DAT	
425	ID	***************************************	
426 427	ID	FILE: MPG20RT2.DAT	
428	ID ID	MODEL REVISED: 01-08-08	
430	ID		
431 432	ID	FROUECI. MESA PROVING GROUNDS	
433 434	ID ID	MODEL REVISION DESCRIPTION:	
435	ID	THIS MODEL SHOULD REPLACE WS4-SEM.DAT IN THE HEC-1 RUN SEQUENCE SPECIFIE	
430	ID	BELOW. REFERENCING W32-NEW.D35 15 51111 REQUIRED.	
438 439	ID ID	THIS IS A 100-YEAR, 2-HOUR RETENTION SCENARIO MODEL USING	
440	ID	THE 20MSF COMMERCIAL SPACE AND 15K DU LAND PLAN PROVIDED HEC-1 INDUT	PAGE 9
-			
LINE	ID	1	
441 442	ID TD	BY SWABACK PARTNERS ON 12/12/07.	
443	ID	MITC MODEL TO AN EVEDDE OF MITE MODEL DRAWTORD DV MUT PLOOD OF	
444 445	ID	DISTRICT OF MARICOPA COUNTY (WS4-SEM.DAT). WATERSHEDS 68A, 68B,	
446 447	ID ID	70A, 70B, 71, 73B, 73C, 74B, 74C, 75, 77B, 77C, 78B, 78C, AND 79A HAVE ALL BEEN UPDATED TO REFLECT CURRENT WATERSHED DELINEATIONS.	
448	ID	NEW DEVELOPMENT, CURRENT RETENTION, AND FLOOD ROUTING. BASIN 75	
449	ID	PROVING GROUNDS SITE.	
451 452	ID ID	MODEL REVISED BY:	
453	ID	WOOD, PATEL & ASSOCIATES, INC. Daniel w Matthews e I T	
454	ID	Shill A. Milliond, B.I.I.	
456	ID	FILE PATH:	
		-	

457	ID	R:\MESA PROVING GROUNDS\2006\062753\PROJECT SUPPORT\HYDRO\MDR-20-15 LAND	
458	ID	PLAN\HYDROLOGY\POST-DEVELOPED 100YR2HR RETENTION MODEL (MPG20RT2)\	
459	ID	MPG20RT2.DAT	
460	TD	***********	
462	ID		
463	ID		
464	ID	ID Kirkham Michael:	
465	ID	Last Revised Date: 1/22/03	
467	TD	FILEHALLE. W54-SEM.DAI	
468	ID	Comments Dated 1/22/03 (CJ)	
469	ID		
470	ID	This model should be used ONLY for the Rittenhouse and Chandler Heights	
471	ID	Basin Design Project - Final Design Analyses.	
472	ID TD	This model is one of coveral models that correspont the FMF watershed	
474	TD	This model covers the Southeast Mess Area and should reference as a DSS	
475	ID	the watershed model for the Northeast Mesa Area (Filename WS2-NEM.DAT).	
476	ID		
477	ID	This model is necessary to determine the input hydrographs for the	
478	ID	Rittenhouse Basin Design HEC-RAS Unsteady State analysis. To develop	
4/9	ID	the necessary input hydrographs the following models should be run in order. Because the files utilize a TADE21 file to export hydrographs	
481	TD	between models, prior to running the FIRST model (WSI-NWM.DAT) any existing	
482	ID	TAPE21 file in the directory should be deleted. The run procedure order is:	
483	ID		
484	ID	1) WS1-NWM.DAT	
485	ID	2) WS2-NEM.DAT	
486	ID	3) WS3-QCSW.DAT () WC4-SEW DAT (referencing WS2-NEW DS2 for the DS2 file)	
488	10	5) RT1-BASE.DAT	
489	ID		
490	ID	The necessary input hydrographs for the Rittenhouse Basin analysis	
491	ID	are determined in RTI-BASE. In that output file, the hydrograph at	
492	ID	RWFLD1 should be exported and used as the input hydrograph at the	
493 494	TD	her reach 4 cross Section 17.082. And the hydrograph at RITTEN should be exported and used as the input hydrograph for the Rittenbourg Main	
495	ID	Channel at Cross Section 820.00	
		HEC-1 INPUT	PAGE 10
LINE	ID.	1	
106	TD		
490	TD		
498	ID	***********	
499	ID	**** NOTE BY PRIMATECH ENGINEERS: ****	
500	ID	**** DATE: 06/12/2001 ****	
501	ID	**** THE NEW FILE NAME IS: SEBTALT2.DAT ****	
502	ID	**** THE FILE WAS RENAMED AS < <rtbtallz dat="">> FOR THE EAST MARICOPA</rtbtallz>	
503	TD	**** MARICOPA COUNTY.	
505	ID	**** THE FILE WAS RENAMED < <rtbtalt3.dat>> AND UPDATED USING GREEN AND ****</rtbtalt3.dat>	
		**** AMET FUTURE CONDITIONS FOR BASINS 258 TO 268	
506	ID	The Protocol competitions for bibling 250 to 200.	
506 507	ID	***************************************	
506 507 508	ID ID ID		
506 507 508 509 510	ID ID ID ID		
506 507 508 509 510 511	ID ID ID ID ID	THIS MODEL WAS ORIGINALLY MIDDOUT DAT	
506 507 508 509 510 511 512	ID ID ID ID ID ID ID	THIS MODEL WAS ORIGINALLY MIDDOUT.DAT IT HAS BEEN MODIFIED BY CPE (7/2000)	
506 507 508 509 510 511 512 513	ID ID ID ID ID ID ID	THIS MODEL WAS ORIGINALLY MIDDOUT.DAT IT HAS BEEN MODIFIED BY CPE (7/2000) FOR ALTERNATIVE 2 FOR THE EAST MARICOPA FLOOWAY	
506 507 508 509 510 511 512 513 514	ID ID ID ID ID ID ID	THIS MODEL WAS ORIGINALLY MIDDOUT.DAT IT HAS BEEN MODIFIED BY CPE (7/2000) FOR ALTERNATIVE 2 FOR THE EAST MARICOPA FLOOWAY CAPACITY MITIGATION AND MULTI-USE CORRIDOR STUDY	
506 507 508 509 511 512 513 514 514 515	ID ID ID ID ID ID ID ID	THIS MODEL WAS ORIGINALLY MIDDOUT.DAT IT HAS BEEN MODIFIED BY CPE (7/2000) FOR ALTERNATIVE 2 FOR THE EAST MARICOPA FLOWAY CAPACITY MITIGRATION AND MULTI-USE CORRIDOR STUDY TO ROUTE BOTH THE POWERLINE FLOWAY	
506 507 508 510 511 512 513 514 515 516 517	ID ID ID ID ID ID ID ID ID	THIS MODEL WAS ORIGINALLY MIDDOUT.DAT IT HAS BEEN MODIFIED BY CPE (7/2000) FOR ALTERNATIVE 2 FOR THE EAST MARICOPA FLOOWAY CAPACITY MITIGATION AND MULTI-USE CORRIDOR STUDY TO ROUTE BOTH THE POWERLINE FLOOWAY AND THE SANTAN FREEWAY CHANNEL INTO THE RAY BASIN PRIOR THEIR OUTFALL INTO THE EMM	
506 507 508 510 511 512 513 514 515 516 516 517 518	ID ID ID ID ID ID ID ID ID ID ID	THIS MODEL WAS ORIGINALLY MIDDOUT.DAT IT HAS BEEN MODIFIED BY CPE (7/2000) FOR ALTERNATIVE 2 FOR THE EAST MARICOPA FLOOWAY CAPACITY MITIGATION AND MULTI-USE CORRIDOR STUDY TO ROUTE BOTH THE POWERLINE FLOOWAY AND THE SANTAR THEEWAY CHANNEL INTO THE RAY BASIN PRIOR THEIR OUTFALL INTO THE EMF	
506 507 508 510 511 512 513 514 515 516 515 516 517 518 519	ID ID ID ID ID ID ID ID ID ID ID	THIS MODEL WAS ORIGINALLY MIDDOUT.DAT IT HAS BEEN MODIFIED BY CPE (7/2000) FOR ALTERNATIVE 2 FOR THE EAST MARICOPA FLOOWAY CAPACITY MITIGRATION AND MULTI-USE CORRIDOR STUDY TO ROUTE BOTH THE POWERLINE FLOOWAY AND THE SANTAN FREEWAY CHANNEL INTO THE RAY BASIN PRIOR THEIR OUTFALL INTO THE EMF	
506 507 508 510 511 512 513 514 515 516 517 518 519 519 520	ID ID ID ID ID ID ID ID ID ID ID ID	THIS MODEL WAS ORIGINALLY MIDDOUT.DAT IT HAS BEEN MODIFIED BY CPE (7/2000) FOR ALTERNATIVE 2 FOR THE EAST MARICOPA FLOOWAY CAPACITY MITIGRATION AND MULTI-USE CORRIDOR STUDY TO ROUTE BOTH THE POWERLINE FLOOWAY AND THE SANTAN FREEWAY CHANNEL INTO THE RAY BASIN PRIOR THEIR OUTFALL INTO THE EMF	
506 507 508 509 510 512 513 514 515 516 517 518 519 520 521 521	ID ID ID ID ID ID ID ID ID ID ID ID ID I	THIS MODEL WAS ORIGINALLY MIDDOUT.DAT IT HAS BEEN MODIFIED BY CPE (7/2000) FOR ALTERNATIVE 2 FOR THE EAST MARICOPA FLOOWAY CAPACITY MITIGATION AND MULTI-USE CORRIDOR STUDY TO ROUTE BOTH THE POWERLINE FLOOWAY AND THE SANTAN FREEWAY CHANNEL INTO THE RAY BASIN PRIOR THEIR OUTFALL INTO THE EMF Model files changed by Colling/Pina Engineering	
506 508 509 511 512 513 514 515 516 517 518 519 521 521 521 522	ID ID ID ID ID ID ID ID ID ID ID ID ID I	THIS MODEL WAS ORIGINALLY MIDDOUT.DAT IT HAS BEEN MODIFIED BY CPE (7/2000) FOR ALTERNATIVE 2 FOR THE EAST MARICOPA FLOOWAY CAPACITY MITIGATION AND MULTI-USE CORRIBOR STUDY TO ROUTE BOTH THE POWERLINE FLOOWAY AND THE SANTAN FREEWAY CHANNEL INTO THE RAY BASIN PRIOR THEIR OUTFALL INTO THE EMF Model files changed by Collins/Pina Engineering to reflect multi-use design concepts (recreation and environment) proposed throughout the entire	
506 507 508 510 511 512 513 514 515 516 517 516 517 519 520 521 522 522 522 522	ID ID ID ID ID ID ID ID ID ID ID ID ID I	THIS MODEL WAS ORIGINALLY MIDDOUT.DAT IT HAS BEEN MODIFIED BY CPE (7/2000) FOR ALTERNATIVE 2 FOR THE EAST MARICOPA FLOOWAY CAPACITY MITIGATION AND MULTI-USE CORRIDOR STUDY TO ROUTE BOTH THE POWERLINE FLOOWAY AND THE SANTAN FREEWAY CHANNEL INTO THE RAY BASIN PRIOR THEIR OUTFALL INTO THE EMF Model files changed by Collins/Pina Engineering to reflect multi-use design concepts (recreation and environment) proposed throughout the entire EMF Corridor. JULY 2000	
506 507 508 509 511 512 513 514 515 516 517 518 519 520 521 522 522 522 522 525	ID ID ID ID ID ID ID ID ID ID ID ID ID I	THIS MODEL WAS ORIGINALLY MIDDOUT.DAT IT HAS BEEN MODIFIED BY CPE (7/2000) FOR ALTERNATIVE 2 FOR THE EAST MARICOPA FLOWAY CAPACITY MITIGATION AND MULTI-USE CORRIDOR STUDY TO ROUTE BOTH THE POWERLINE FLOWAY AND THE SANTAN FREEWAY CHANNEL INTO THE RAY BASIN PRIOR THEIR OUTFALL INTO THE EMF Model files changed by Collins/Pina Engineering to reflect multi-use design concepts (recreation and environment) proposed throughout the entire EMF Corridor. July 2000	
506 507 508 509 510 511 512 513 513 514 515 515 515 515 518 519 521 522 523 524 525 526	ID ID ID ID ID ID ID ID ID ID ID ID ID I	THIS MODEL WAS ORIGINALLY MIDDOUT.DAT IT HAS BEEN MODIFIED BY CPE (7/2000) FOR ALTERNATIVE 2 FOR THE EAST MARICOPA FLOOWAY CAPACITY MITIGATION AND MULTI-USE CORRIBOR STUDY TO ROUTE BOTH THE POWERLINE FLOOWAY AND THE SANTAR FREEWAY CHANNEL INTO THE RAY BASIN PRIOR THEIR OUTFALL INTO THE EMF Model files changed by Collins/Pina Engineering to reflect multi-use design concepts (recreation and environment) proposed throughout the entire EMF Corridor. July 2000	
506 507 508 509 510 511 512 513 515 514 515 514 517 518 517 519 520 521 522 522 522 522 522 522 522 522 522	ID ID ID ID ID ID ID ID ID ID ID ID ID I	THIS MODEL WAS ORIGINALLY MIDDOUT.DAT IT HAS BEEN MODIFIED BY CPE (7/2000) FOR ALTERNATIVE 2 FOR THE EAST MARICOPA FLOOWAY CAPACITY MITIGATION AND MULTI-USE CORRIDOR STUDY TO ROUTE BOTH THE POWERLINE FLOOWAY AND THE SANTAN FREEWAY CHANNEL INTO THE RAY BASIN PRIOR THEIR OUTFALL INTO THE EMF MOdel files changed by Collins/Pina Engineering to reflect multi-use design concepts (recreation and environment) proposed throughout the entire EMF Corridor. July 2000 VERSION 8.06 CPE 7/31/00	
506 507 508 510 511 512 513 515 515 515 515 515 517 518 517 518 520 521 522 522 522 522 525 526 527 528	ID ID ID ID ID ID ID ID ID ID ID ID ID I	THIS MODEL WAS ORIGINALLY MIDDOUT.DAT IT HAS BEEN MODIFIED BY CPE (7/2000) FOR ALTERNATIVE 2 FOR THE EAST MARICOPA FLOWAY CAPACITY MITIGATION AND MULTI-USE CORRIDOR STUDY TO ROUTE BOTH THE POWERLINE FLOWAY AND THE SANTAN FREEWAY CHANNEL INTO THE RAY BASIN PRIOR THEIR OUTFALL INTO THE EMF Model files changed by Collins/Pina Engineering to reflect multi-use design concepts (recreation and environment) proposed throughout the entire EMF Corridor. July 2000 VERSION 8.06 CPE 7/31/00	
506 507 509 510 512 513 512 513 514 515 516 517 518 521 521 522 521 522 523 524 525 526 527 528 529 520 525 528 529 520	ID ID ID ID ID ID ID ID ID ID ID ID ID I	THIS MODEL WAS ORIGINALLY MIDDOUT.DAT IT HAS BEEN MODIFIED BY CPE (7/2000) FOR ALTERNATIVE 2 FOR THE EAST MARICOPA FLOOWAY CAPACITY MITIGATION AND MULTI-USE CORRIDOR STUDY TO ROUTE BOTH THE POWERLINE FLOOWAY AND THE SANTAN FREEWAY CHANNEL INTO THE RAY BASIN PRIOR THEIR OUTFALL INTO THE EMF Model files changed by Collins/Pina Engineering to reflect multi-use design concepts (recreation and environment) proposed throughout the entire EMF Corridor. July 2000 VERSION 8.06 CPE 7/31/00	
506 507 508 510 511 512 513 515 514 515 517 518 517 518 517 519 520 521 522 523 524 522 523 524 525 526 527 528 529 520 529 529 531	ID ID ID ID ID ID ID ID ID ID ID ID ID I	THIS MODEL WAS ORIGINALLY MIDDOUT.DAT IT HAS BEEN MODIFIED BY CPE (7/2000) FOR ALTERNATIVE 2 FOR THE EAST MARICOPA FLOOWAY CAPACITY MITIGATION AND MULTI-USE CORRIDOR STUDY TO ROUTE BOTH THE POWERLINE FLOOWAY AND THE SANTAN FREEWAY CHANNEL INTO THE RAY BASIN PRIOR THEIR OUTFALL INTO THE EMF Model files changed by Collins/Pina Engineering to reflect multi-use design concepts (recreation and environment) proposed throughout the entire EMF Corridor. July 2000 VERSION 8.06 CPE 7/31/00	
506 507 508 510 511 512 513 515 515 515 515 517 518 517 519 520 521 522 522 522 522 522 522 522 522 522	ID ID ID ID ID ID ID ID ID ID ID ID ID I	THIS MODEL WAS ORIGINALLY MIDDOUT.DAT IT HAS BEEN MODIFIED BY CPE (7/2000) FOR ALTERNATIVE 2 FOR THE EAST MARICOPA FLOWAY CAPACITY MITIGATION AND MULTI-USE CORRIDOR STUDY TO ROUTE BOTH THE POWERLINE FLOWAY AND THE SANTAN FREEWAY CHANNEL INTO THE RAY BASIN PRIOR THEIR OUTFALL INTO THE EMF Model files changed by Collins/Pina Engineering to reflect multi-use design concepts (recreation and environment) proposed throughout the entire EMF Corridor. July 2000 VERSION 8.06 CPE 7/31/00	
506 507 508 510 511 512 513 514 515 514 515 516 517 518 521 522 524 525 524 525 526 527 528 526 527 528 526 527 528 528 529 531 532	ID ID ID ID ID ID ID ID ID ID ID ID ID I	THIS MODEL WAS ORIGINALLY MIDDOUT.DAT IT HAS BEEN MODIFIED BY CPE (7/2000) FOR ALTERNATIVE 2 FOR THE EAST MARICOPA FLOOWAY CAPACITY MITIGATION AND MULTI-USE CORRIBOR STUDY TO ROUTE BOTH THE POWERLINE FLOOWAY AND THE SANTAN FREEWAY CHANNEL INTO THE RAY BASIN PRIOR THEIR OUTFALL INTO THE EMF Model files changed by Collins/Pina Engineering to reflect multi-use design concepts (recreation and environment) proposed throughout the entire EMF Corridor. July 2000 VERSION 8.06 CPE 7/31/00 FILENAME: MIDDOUT.DAT	
506 507 508 510 511 512 513 515 514 515 516 517 518 517 518 521 521 522 523 524 525 524 522 524 525 524 525 524 525 526 527 529 531 531 532 533 533 533 534	ID ID ID ID ID ID ID ID ID ID ID ID ID I	THIS MODEL WAS ORIGINALLY MIDDOUT.DAT IT HAS BEEN MODIFIED BY CPE (7/2000) FOR ALTERNATIVE 2 FOR THE EAST MARICOPA FLOOWAY CAPACITY MITIGATION AND MULTI-USE CORRIBOR STUDY TO ROUTE BOTH THE POWERLINE FLOOWAY AND THE SANTAR FREEWAY CHANNEL INTO THE RAY BASIN PRIOR THEIR OUTFALL INTO THE EMF Model files changed by Collins/Pina Engineering to reflect multi-use design concepts (recreation and environment) proposed throughout the entire EMF Corridor. July 2000 VERSION 8.06 CPE 7/31/00 FILENAME: MIDDOUT.DAT ALL OLD INFRACTORCHIPE IS IN PLACE FURTHER CONDITIONS LANDISE IS IN PLACE	
506 507 508 509 510 511 512 513 515 516 516 517 518 521 521 522 523 525 526 527 528 527 528 527 528 527 528 527 528 527 528 527 528 527 528 527 528 527 528 527 528 527 528 532 533 533 533 533 533 533 533 533 534 535 536	ID ID ID ID ID ID ID ID ID ID ID ID ID I	THIS MODEL WAS ORIGINALLY MIDDOUT.DAT IT HAS BEEN MODIFIED BY CPE (7/2000) FOR ALTERNATIVE 2 FOR THE EAST MARICOPA FLOWAY CAPACITY MITIGATION AND MULTI-USE CORRIDOR STUDY TO ROUTE BOTH THE POWERLINE FLOWAY AND THE SANTAN FREEWAY CHANNEL INTO THE RAY BASIN PRIOR THEIR OUTFALL INTO THE EMF Model files changed by Collins/Pina Engineering to reflect multi-use design concepts (recreation and environment) proposed throughout the entire EMF Corridor. July 2000 VERSION 8.06 CPE 7/31/00 FILENAME: MIDDOUT.DAT ALL CIP INFRASTRUCTURE IS IN PLACE, FUTURE CONDITIONS LANDUSE IS IN PLACE FLOW IS ROUTED UN A EAPTH LUNED CHANNEL	
506 507 509 511 512 513 515 514 515 516 517 518 521 521 521 522 521 522 523 524 525 526 527 528 529 521 522 528 529 521 523 525 528 529 531 532 533 533 535 537	ID ID ID ID ID ID ID ID ID ID ID ID ID I	THIS MODEL WAS ORIGINALLY MIDDOUT.DAT IT HAS BEEN MODIFIED BY CPE (7/2000) FOR ALTERNATIVE 2 FOR THE EAST MARICOPA FLOOWAY CAPACITY MITIGATION AND MULTI-USE CORRIDOR STUDY TO ROUTE BOTH THE POWERLINE FLOOWAY AND THE SANTAN FREEWAY CHANNEL INTO THE RAY BASIN PRIOR THEIR OUTFALL INTO THE EMF Model files changed by Collins/Pina Engineering to reflect multi-use design concepts (recreation and environment) proposed throughout the entire EMF Corridor. July 2000 VERSION 8.06 CPE 7/31/00 FILENAME: MIDDOUT.DAT ALL CIP INFRASTRUCTURE IS IN PLACE, FUTURE CONDITIONS LANDUSE IS IN PLACE FLOW IS ROUTED UP ELLSWORTH ROAD IN A EARTH LINED CHANNEL	
506 507 508 509 510 511 512 513 515 514 515 516 517 518 521 521 521 522 523 524 525 524 525 524 525 524 525 524 525 528 531 533 533 533 538	ID ID ID ID ID ID ID ID ID ID ID ID ID I	THIS MODEL WAS ORIGINALLY MIDDOUT.DAT IT HAS BEEN MODIFIED BY CPE (7/2000) FOR ALTERNATIVE 2 FOR THE EAST MARICOPA FLOOWAY CAPACITY MITIGATION AND MULTI-USE CORRIBOR STUDY TO ROUTE BOTH THE POWERLINE FLOOWAY AND THE SANTAR FREEWAY CHANNEL INTO THE RAY BASIN PRIOR THEIR OUTFALL INTO THE EMF Model files changed by Collins/Pina Engineering to reflect multi-use design concepts (recreation and environment) proposed throughout the entire EMF Corridor. July 2000 VERSION 8.06 CPE 7/31/00 FILENAME: MIDDOUT.DAT ALL CIP INFRASTRUCTURE IS IN PLACE, FUTURE CONDITIONS LANDUSE IS IN PLACE FLOW IS ROUTED UP ELLSWORTH ROAD IN A EARTH LINED CHANNEL	
506 507 508 509 510 511 512 513 515 516 517 518 517 518 517 519 520 521 522 523 522 522 522 522 522 522 522 522 522 522 522 522 523 522 522 522 522 522 523 522 522 523 522 523 522 523 522 523 522 523 522 523 525 526 527 528 527 528 529 531 533 534 533 534 533 534 535 536 537 538 533 536 537 538 533 536 537 538 533 536 537 538 536 537 538 536 537 538 538 537 538	ID ID ID ID ID ID ID ID ID ID ID ID ID I	THIS MODEL WAS ORIGINALLY MIDDOUT.DAT IT HAS BEEN MODIFIED BY CPE (7/2000) FOR ALTERNATIVE 2 FOR THE EAST MARICOPA FLOWAY CAPACITY MITIGATION AND MULTI-USE CORRIDOR STUDY TO ROUTE BOTH THE POWERLINE FLOWAY AND THE SANTAN FREEWAY CHANNEL INTO THE RAY BASIN PRIOR THEIR OUTFALL INTO THE EMF Model files changed by Collins/Pina Engineering to reflect multi-use design concepts (recreation and environment) proposed throughout the entire EMF Corridor. July 2000 VERSION 8.06 CPE 7/31/00 FILENAME: MIDDOUT.DAT ALC CIP INFRASTRUCTURE IS IN PLACE, FUTURE CONDITIONS LANDUSE IS IN PLACE FLOW IS ROUTED UP ELLSWORTH ROAD IN A EARTH LINED CHANNEL PRODUCED BY DIBBLE AND ASSOCIATES AND HOSKIN ENGINEERING CONSULTANTS.	
506 507 509 510 511 512 513 512 513 515 516 517 518 520 521 522 523 524 523 524 523 524 523 525 535 537 538 539 541	ID ID ID ID ID ID ID ID ID ID ID ID ID I	THIS MODEL WAS ORIGINALLY MIDDOUT.DAT IT HAS BEEN MODIFIED BY CPE (7/2000) FOR ALTERNATIVE 2 FOR THE EAST MARICOPA FLOWAY CAPACITY MITIGATION AND MULTI-USE CORRIDOR STUDY TO ROUTE BOTH THE POWERLINE FLOWAY AND THE SANTAN FREEWAY CHANNEL INTO THE RAY BASIN PRIOR THEIR OUTFALL INTO THE EMF Model files changed by Collins/Pina Engineering to reflect multi-use design concepts (recreation and environment) proposed throughout the entire EMF Corridor. July 2000 VERSION 8.06 CPE 7/31/00 VERSION 8.06 CPE 7/31/00 FILENAME: MIDDOUT.DAT ALL CIP INFRASTRUCTURE IS IN PLACE, FUTURE CONDITIONS LANDUSE IS IN PLACE FLOW IS ROUTED UP ELLSWORTH ROAD IN A EARTH LINED CHANNEL PRODUCED BY DIBBLE AND ASSOCIATES AND HOSKIN ENCINEERING CONSULTANTS. File Name: FinalB.Dat Peried a Jan 2000 by SX (Mood/Patel) EVER Final7 det = per 7.4 f Cidemin	
506 507 508 509 510 512 513 512 514 515 516 517 518 519 521 522 523 524 525 524 525 526 527 528 529 531 532 533 534 533 533 534 533 535 538 539 539 531 532 533 534 533 534 535 536 537 538 539 539 539 539 539 539 539 539 530 531 532 532 533 533 533 534 532 533 533 534 532 533 533 533 534 532 532 533 533 533 533 533 533 533 533	ID ID ID ID ID ID ID ID ID ID ID ID ID I	THIS MODEL WAS ORIGINALLY MIDDOUT.DAT IT HAS BEEN MODIFIED BY CPE (7/2000) FOR ALTERNATIVE 2 FOR THE EAST MARICOPA FLOOWAY CAPACITY MITIGATION AND MULTI-USE CORRIDOR STUDY TO ROUTE BOTH THE POWERLINE FLOOWAY AND THE SANTAN FREEWAY CHANNEL INTO THE RAY BASIN PRIOR THEIR OUTFALL INTO THE EMF Model files changed by Collins/Pina Engineering to reflect multi-use design concepts (recreation and environment) proposed throughout the entire EMF Corridor. July 2000 VERSION 8.06 CPE 7/31/00 VERSION 8.06 CPE 7/31/00 FILENAME: MIDDOUT.DAT ALL CIP INFRASTRUCTURE IS IN PLACE, FUTURE CONDITIONS LANDUSE IS IN PLACE FLOW IS ROUTED UP ELLSWORTH ROAD IN A EARTH LINED CHANNEL PRODUCED BY DIBBLE AND ASSOCIATES AND HOSKIN ENGINEERING CONSULTANTS. File Name: Final8.Dat Revised - Jan. 2000 by SZ (Wood/Patel) From Final7.dat - new Z-V & Sideweir Revised - Jan. 2000 by SZ (Wood/Patel) From Final7.dat - new Z-V & Sideweir	
506 507 508 509 511 512 513 515 516 517 518 517 518 517 518 517 519 520 521 522 523 522 522 522 522 522 522 522 522 522 522 523 522 523 522 523 522 523 522 523 522 523 522 523 522 523 525 522 523 525 525 527 528 529 531 533 533 533 535 537 538 537 541 541 542 543	ID ID ID ID ID ID ID ID ID ID ID ID ID I	THIS MODEL WAS ORIGINALLY MIDDOUT.DAT IT HAS BEEN MODIFIED BY CPE (7/2000) FOR ALTERNATIVE 2 FOR THE EAST MARICOPA FLOWAY CAPACITY MITIGATION AND MULTI-USE CORRIDOR STUDY TO ROUTE BOTH THE POWERLINE FLOWAY AND THE SANTAN FREEWAY CHANNEL INTO THE RAY BASIN PRIOR THEIR OUTFALL INTO THE EMF Model files changed by Collins/Pina Engineering to reflect multi-use design concepts (recreation and environment) proposed throughout the entire EMF Corridor. July 2000 VERSION 8.06 CPE 7/31/00 VERSION 8.06 CPE 7/31/00 FILENAME: MIDDOUT.DAT ALL CIP INFRASTRUCTURE IS IN PLACE, FUTURE CONDITIONS LANDUSE IS IN PLACE FLOW IS ROUTED UP ELLSWORTH ROAD IN A EARTH LINED CHANNEL PRODUCED BY DIBBLE AND ASSOCIATES AND HOSKIN ENGINEERING CONSULTANTS. FILE NAME: Final8.Dat Revised - Jan. 2000 by SZ (Wood/Patel) From Final7.dat - new Z-V & Sideweir Revised - Jan. 2000 by SZ (Wood/Patel) from Final6.dat - 60% review comments Revised - Dec. 1999 by SZ (Wood/Patel) from Final6.dat - 60% review comments	
506 507 508 510 512 512 513 512 514 515 516 517 518 521 521 521 521 521 522 523 524 523 524 523 524 523 524 525 526 527 531 531 535 535 536 537 533 534 535 535 537 538 539 540 542 544	ID ID ID ID ID ID ID ID ID ID ID ID ID I	THIS MODEL WAS ORIGINALLY MIDDOUT.DAT IT HAS BEEN MODIFIED BY CPE (7/2000) FOR ALTERNATIVE 2 FOR THE EAST MARICOPA FLOOWAY CAPACITY MITIGATION AND MULTI-USE CORRIDOR STUDY TO ROUTE BOTH THE POWERLINE FLOOWAY AND THE SANTAN FREEWAY CHANNEL INTO THE RAY BASIN PRIOR THEIR OUTFALL INTO THE EMF Model files changed by Collins/Pina Engineering to reflect multi-use design concepts (recreation and environment) proposed throughout the entire EMF Corridor. July 2000 VERSION 8.06 CPE 7/31/00 VERSION 8.06 CPE 7/31/00 FILENAME: MIDDOUT.DAT ALL CIP INFRASTRUCTURE IS IN PLACE, FUTURE CONDITIONS LANDUSE IS IN PLACE FLOW IS ROUTED UP ELLSWORTH ROAD IN A EARTH LINED CHANNEL PRODUCED BY DIBBLE AND ASSOCIATES AND HOSKIN ENGINEERING CONSULTANTS. File Name: Final8.Dat Revised - Jan. 2000 by SZ (Wood/Patel) From Final7.dat - new Z-V & Sideweir Revised - Jan. 2000 by SZ (Wood/Patel) from Final6.dat - 60% review comments Revised - Dec. 1999 by SZ (Wood/Patel) from Final6.dat Revised - Dec. 1999 by SZ (Wood/Patel) from Final6.dat Revised - Dec. 1999 by SZ (Wood/Patel) from Final6.dat	
506 507 508 509 510 512 513 512 514 515 516 517 518 521 522 523 524 525 524 525 524 525 526 527 528 529 531 532 533 534 533 534 533 535 536 537 538 539 531 532 533 534 535 536 537 538 539 531 532 533 534 535 533 534 535 533 534 535 535	ID ID ID ID ID ID ID ID ID ID ID ID ID I	THIS MODEL WAS ORIGINALLY MIDDOUT.DAT IT HAS BEEN MODIFIED BY CPE (7/2000) FOR ALTERNATIVE 2 FOR THE EAST MARICOPA FLOOWAY CAPACITY MITIGATION AND MULTI-USE CORRIDOR STUDY TO ROUTE BOTH THE POWERLINE FLOOWAY AND THE SANTAN FREEWAY CHANNEL INTO THE RAY BASIN PRIOR THEIR OUTFALL INTO THE EMF Model files changed by Collins/Pina Engineering to reflect multi-use design concepts (recreation and environment) proposed throughout the entire EMF Corridor. July 2000 VERSION 8.06 CPE 7/31/00 VERSION 8.06 CPE 7/31/00 FILENAME: MIDDOUT.DAT ALL CIP INFRASTRUCTURE IS IN PLACE, FUTURE CONDITIONS LANDUSE IS IN PLACE FLOW IS ROUTED UP ELLSWORTH ROAD IN A EARTH LINED CHANNEL PRODUCED BY DIBELE AND ASSOCIATES AND HOSKIN ENGINEERING CONSULTANTS. File Name: Final8.Dat Revised - Jan. 2000 by SZ (Wood/Patel) From Final7.dat - new Z-V & Sideweir Revised - Jac. 1999 by SZ (Wood/Patel) from Final5.dat Revised - Dec. 1999 by SZ (Wood/Patel) from Final3.dat	
506 507 508 510 511 512 513 515 515 515 517 518 521 522 523 524 525 529 520 522 523 524 525 529 531 532 522 523 524 525 529 531 532 533 533 534 535 536 537 538 533 534 535 534 535 534 535 534 535 534 535 534 535 534 535 534 535 534 535 534 535 534 535 534 535 534 535 534 535 534 535 522 523 524 525 523 524 525 524 525 524 525 524 525 524 525 524 525 524 525 527 523 524 525 524 525 524 525 524 525 524 525 524 525 524 525 524 525 524 525 527 523 524 525 525		THIS MODEL WAS ORIGINALLY MIDDOUT.DAT IT HAS BEEN MODIFIED BY CPE (7/2000) FOR ALTERNATIVE 2 FOR THE EAST MARICOPA FLOWAY CAPACITY MITIGATION AND MULTI-USE CORRIDOR STUDY TO ROUTE BOTH THE POWERLINE FLOWAY AND THE SANTAN FREEWAY CHANNEL INTO THE RAY BASIN PRIOR THEIR OUTFALL INTO THE EMF Model files changed by Collins/Pina Engineering to reflect multi-use design concepts (recreation and environment) proposed throughout the entire EMF Corridor. July 2000 VERSION 8.06 CPE 7/31/00 VERSION 8.06 CPE 7/31/00 FILENAME: MIDDOUT.DAT ALL CIP INFRASTRUCTURE IS IN PLACE, FUTURE CONDITIONS LANDUSE IS IN PLACE FLOW IS ROUTED UP ELLSWORTH ROAD IN A EARTH LINED CHANNEL PRODUCED BY DIBBLE AND ASSOCIATES AND HOSKIN ENGINEERING CONSULTANTS. FILE NAME: Final8.Dat Revised - Jan. 2000 by SZ (Wood/Patel) From Final7.dat - new Z-V & Sideweir Revised - Jan. 2000 by SZ (Wood/Patel) from Final6.dat - 60% review comments Revised - Dec. 1999 by SZ (Wood/Patel) from Final3.dat Revised - Dec. 1999 by SZ (Wood/Patel) from Final4.dat Revised - Nov. 1999 by SZ (Wood/Patel) from Final4.dat Revised - Nov. 1999 by SZ (Wood/Patel) from Final3.dat Revised - Nov. 1999 by SZ (Wood/Patel) from Final4.dat Revised - Nov. 1999 by SZ (Wood/Patel) from Final4.dat	
506 507 508 512 512 512 513 512 514 515 516 517 518 521 521 521 521 521 522 523 524 523 524 523 524 523 524 525 528 529 531 531 535 535 535 535 535 535 537 538 537 538 539 540 542 544 544 544 546 542 544 546 542		THIS MODEL WAS ORIGINALLY MIDDOUT.DAT IT HAS BEEN MODIFIED BY CPE (7/2000) FOR ALTERNATIVE 2 FOR THE EAST MARICOPA FLOOWAY CAPACITY MITIGATION AND MULTI-USE CORRIDOR STUDY TO ROUTE BOTH THE POWERLINE FLOOWAY AND THE SANTAN FREEWAY CHANNEL INTO THE RAY BASIN PRIOR THEIR OUTFALL INTO THE EMF Model files changed by Collins/Pina Engineering to reflect multi-use design concepts (recreation and environment) proposed throughout the entire EMF Corridor. July 2000 VERSION 8.06 CPE 7/31/00 VERSION 8.06 CPE 7/31/00 FILENAME: MIDDOUT.DAT ALL CIP INFRASTRUCTURE IS IN PLACE, FUTURE CONDITIONS LANDUSE IS IN PLACE FLOW IS ROUTED UP ELLSWORTH ROAD IN A EARTH LINED CHANNEL FRODUCED BY DIBBLE AND ASSOCIATES AND HOSKIN ENCINEERING CONSULTANTS. File Name: Final8.Dat Revised - Jan. 2000 by SZ (Wood/Patel) from Final1.dat - new Z-V & Sideweir Revised - Jan. 2000 by SZ (Wood/Patel) from Final3.dat Revised - Dec. 1999 by SZ (Wood/Patel) from Final3.dat Revised - June 1999 by SZ (Wood/Patel) from Final3.dat Revised - May 1999 by SZ (Wood/Patel) from Final3.dat	
506 507 508 509 511 512 513 515 516 517 518 519 521 522 523 524 525 521 522 523 524 525 526 527 528 529 531 532 533 534 533 533 534 533 533 534 533 533		THIS MODEL WAS ORIGINALLY MIDDOUT.DAT IT HAS BEEN MODIFIED BY CPE (7/2000) FOR ALTERNATIVE 2 FOR THE EAST MARICOPA FLOOWAY CAPACITY MITIGATION AND MULTI-USE CORRIDOR STUDY TO ROUTE BOTH THE POWERLINE FLOOWAY AND THE SANTAN FREEWAY CHANNEL INTO THE RAY BASIN PRIOR THEIR OUTFALL INTO THE EMF Model files changed by Collins/Pina Engineering to reflect multi-use design concepts (recreation and environment) proposed throughout the entire EMF Corridor. July 2000 VERSION 8.06 CPE 7/31/00 VERSION 8.06 CPE 7/31/00 FILENAME: MIDDOUT.DAT ALL CIP INFRASTRUCTURE IS IN PLACE, FUTURE CONDITIONS LANDUSE IS IN PLACE FLOW IS ROUTED UP ELLSWORTH ROAD IN A EARTH LINED CHANNEL PRODUCED BY DIBBLE AND ASSOCIATES AND HOSKIN ENGINEERING CONSULTANTS. File Name: Finals.Dat Revised - Jan. 2000 by SZ (Wood/Patel) From Final7.dat - new Z-V & Sideweir Revised - Jan. 2000 by SZ (Wood/Patel) From Final6.dat Revised - Dec. 1999 by SZ (Wood/Patel) from Final6.dat Revised - Dec. 1999 by SZ (Wood/Patel) from Final3.dat Revised - NoV. 1999 by SZ (Wood/Patel) from Final3.dat Revised - May 1999 by SZ (Wood/Patel	
506 507 508 510 511 512 513 515 516 517 518 517 518 517 519 520 521 522 523 524 522 523 524 522 523 531 532 532 533 534 535 535 536 537 538 536 537 538 536 537 538 536 537 538 536 537 538 536 537 538 536 537 538 536 537 538 536 537 538 536 537 538 536 537 538 536 537 538 536 537 538 536 537 541 543 544 545		<pre>THIS MODEL WAS ORIGINALLY MIDDOUT.DAT IT HAS BEEN MODIFIED BY CPE (7/2000) FOR ALTERNATIVE 2 FOR THE EAST MARICOPA FLOWAY CAPACITY MITIGATION AND MULTI-USE CORRIDOR STUDY TO ROUTE BOTH THE POWERLINE FLOWAY AND THE SANTAN FREEWAY CHANNEL INTO THE RAY BASIN PRIOR THEIR OUTFALL INTO THE EMF </pre>	
506 507 508 512 512 512 513 512 514 515 516 517 518 521 521 521 521 522 523 524 523 524 521 522 523 524 522 523 524 525 533 535 535 535 535 535 537 538 537 538 537 538 537 538 537 538 537 538 537 538 537 538 537 538 537 538 537 538 537 538 537 538 537 538 537 538 537 538 538 538 538 538 538 538 538 538 538		THIS MODEL WAS ORIGINALLY MIDDOUT.DAT IT HAS BEEN MODIFIED BY CPE (7/2000) FOR ALTERNATIVE 2 FOR THE EAST MARICOPA FLOWAY CAPACITY MITIGATION AND MULTI-USE CORRIDOR STUDY TO ROUTE BOTH THE POWERLINE FLOWAY AND THE SANTAN FREEWAY CHANNEL INTO THE RAY BASIN PRIOR THEIR OUTFALL INTO THE EMF Model files changed by Collins/Pina Engineering to reflect multi-use design concepts (recreation and environment) proposed throughout the entire EMF Corridor. July 2000 VERSION 8.06 CPE 7/31/00 VERSION 8.06 CPE 7/31/00 MILLION THE IN PLACE, FUTURE CONDITIONS LANDUSE IS IN PLACE FILENAME: MIDDOUT.DAT ALL CIP INFRASTRUCTURE IS IN PLACE, FUTURE CONDITIONS LANDUSE IS IN PLACE FLOW IS ROUTED UP ELLSWORTH ROAD IN A EARTH LINED CHANNEL PRODUCED BY DIBBLE AND ASSOCIATES AND HOSKIN ENCINEERING CONSULTANTS. File Name: Final8.Dat Revised - Jan. 2000 by SZ (Wood/Patel) from Final7.dat - new Z-V & Sideweir Revised - Jan. 2000 by SZ (Wood/Patel) from Final3.dat Revised - Dec. 1999 by SZ (Wood/Patel) from Final3.dat Revised - June 1999 by SZ (Wood/Patel) from Final3.dat Revised - MAY, 1999 by XS (Wood/Patel) from Final3.dat Revised - MAY, 1999 by SZ (Wood/Patel) from Final3.dat Revised - MAY, 1	PAGE 11
506 507 508 509 511 512 513 515 516 517 518 519 520 521 522 524 525 526 527 522 524 525 526 527 522 524 525 526 527 528 529 531 532 533 534 535 533 534 535 535 536 537 538 534 535 535 536 537 538 535 535 536 537 538 535 536 537 538 535 536 537 538 535 537 538 535 537 538 535 537 538 536 537 538 535 536 537 538 535 536 537 538 535 536 537 538 535 536 537 538 535 536 537 538 535 536 537 538 535 536 537 538 535 536 537 538 535 536 537 538 535 536 537 538 535 536 537 538 535 536 537 538 535 536 537 538 535 535 536 537 538 535 536 537 538 535 536 537 538 535 535 535 536 537 535 536 537 535 536 537 535 536 537 535 536 537 535 536 537 535 536 537 537 536 537 536 537 536 537 537 536 537 537 537 537 537 537 537 537 537 537		<pre>THIS MODEL WAS ORIGINALLY MIDDOUT.DAT IT HAS BEEN MODIFIED BY CPE (7/2000) FOR ALTERNATIVE 2 FOR THE EAST MARICOPA FLOWAY CAPACITY MITIGATION AND MULTI-USE CORRIDOR STUDY TO ADDITE BOTH THE POWERLINE FLOWAY AND THE SANTAN FREEWAY CHANNEL INTO THE RAY BASIN PRIOR THEIR OUTFALL INTO THE EWF Model files changed by Collins/Pina Engineering to reflect multi-use design concepts (recreation and environment) proposed throughout the entire EMF Corridor. July 2000 VERSION 8.06 CPE 7/31/00 MILLINGTONE IS IN PLACE, FUTURE CONDITIONS LANDUSE IS IN PLACE FLOW IS ROUTED UP ELLSWORTH ROAD IN A EARTH LINED CHANNEL FILENAME: MIDDOUT.DAT ALL CIP INFRASTRUCTURE IS IN PLACE, FUTURE CONDITIONS LANDUSE IS IN PLACE FLOW IS ROUTED UP ELLSWORTH ROAD IN A EARTH LINED CHANNEL FILENAME: FINALBAL Revised - Jan. 2000 by SZ (Wood/Patel) From Final5.dat - new Z-V & Sidewir Revised - Jan. 2000 by SZ (Wood/Patel) From Final5.dat Revised - Dec. 1999 by SZ (Wood/Patel) From Final5.dat Revised - Dec. 1999 by SZ (Wood/Patel) From Final5.dat Revised - Dec. 1999 by SZ (Wood/Patel) From Final5.dat Revised - Nov. 1999 by SZ (Wood/Patel) From Final5.dat Revised - Dec. 1999 by SZ (Wood/Patel) From Final5.dat Revised - Dec. 1999 by SZ (Wood/Patel) From Final5.dat Revised - Nov. 1999 by SZ (Wood/Patel) From Final5.dat Revised - Nov. 1999 by SZ (Wood/Patel) From Final5.dat Revised - May 1999 by SZ (Wood/Patel) From Final5.dat Revised - May 1999 by SZ (Wood/Patel) For Optinal6.dat - for Opti.dat. Revised - May 1999 by SZ (Wood/Patel) For Optinal5.dat Revised - May 1999 by SZ (Wood/Patel) For Optin ALS Assed on Model SDIE.DAT REVISED - MAY, 1999 by SZ (Wood/Patel) FOR Final5.dat REVISED - MAY, 1999 by SZ (Wood/Patel) FOR FINAL5.DAT REVISED - FEB, 1999 by SZ (Wood/Patel) FOR MARICOPA COUNTY HEC' INFUT</pre>	PAGE 11
506 507 508 509 510 511 512 513 515 516 517 518 515 516 517 518 522 524 525 524 522 524 522 524 525 524 522 524 525 524 522 524 525 524 525 531 532 533 533 534 535 536 537 538 536 537 538 536 537 538 536 531 532 534 535 536 531 532 532 533 534 535 534 535 534 535 536 531 532 532 533 534 535 534 535 534 535 534 535 534 535 534 535 534 535 534 535 534 535 534 535 536 537 538 536 537 538 536 537 538 536 537 538 536 537 538 536 537 538 536 537 538 536 537 538 536 537 538 536 537 538 536 537 538 536 537 538 536 537 538 536 537 538 536 537 538 536 537 538 536 537 538 535 536 537 538 535 536 537 538 535 536 537 538 535 536 537 538 535 536 537 538 535 536 537 538 536 537 536 537 536 537 536 537 538 536 537 538 536 537 538 536 537 538 535 536 537 538 535 536 537 538 535 536 537 536 537 538 535 536 537 538 536 537 538 536 537 538 535 536 537 538 535 536 537 538 536 537 545 542 545 545 545 545 545 545 545 545		<pre>THIS MODEL WAS ORIGINALLY MIDDOUT.DAT If HAS BEEN MODIFIED BY CPE (7/2000) FOR ALTERNATIVE 2 FOR THE EAST MARICOPA FLOWAY CAPACITY MITIGATION AND MULTI-USE CORLIDOR STUDY TO ROUTE BOTH THE POWERLINE FLOWAY AND THE SANTAN FREEWAY CHANNEL INTO THE RAY BASIN PRIOR THEIR OUTFALL INTO THE EMP </pre>	PAGE 11
506 507 508 512 512 512 512 512 514 515 516 517 518 521 521 521 522 523 524 523 524 521 522 523 524 522 523 524 522 523 524 525 533 534 535 535 536 537 538 539 540 541 545 546 544 545 546 547 548 550 551 551 551 551 551 551 551 551 552 551 552 553 553 553 553 553 553 553 553 553		THIS MODEL WAS ORIGINALLY MIDDOUT.DAT IT HAS BEEN MODIFIED BY CPE (7/2000) FOR ALTERNATIVE 2 FOR THE EAST MARICOPA FLOWAY CAPACITY MITIGATION AND MULTI-USE CORRIDOR STUDY TO ROUTE BOTH THE POWERLINE FLOWAY AND THE SANTAN FREEWAY CHANNEL INTO THE RAY BASIN PRIOR THEIR OUTFALL INTO THE EMP Model files changed by Collins/Pina Engineering to reflect multi-use design concepts (recreation and environment) proposed throughout the entire EMF Corridor. July 2000 VERSION 8.06 CPE 7/31/00 MULTIONE OF POWER STUDY FILENAME: MIDDOUT.DAT ALL CIP INFRASTRUCTURE IS IN PLACE, FUTURE CONDITIONS LANDUSE IS IN PLACE FLOW IS ROUTED UP ELLSWORTH ROAD IN A EARTH LINED CHANNEL PRODUCED BY DIBELE AND ASSOCIATES AND HOSKIN ENGINEERING CONSULTANTS. File Name: Final8.Dat Revised - Jan. 2000 by S2 (Wood/Patel) From Final7.dat - new Z-V & Sideweir Revised - Jan. 2000 by S2 (Wood/Patel) From Final6.dat Revised - Jan. 2000 by S2 (Wood/Patel) From Final6.dat Revised - Jan. 2000 by S2 (Wood/Patel) From Final6.dat Revised - Dec. 1999 by S2 (Wood/Patel) From Final8.dat Revised - Dec. 1999 by S2 (Wood/Patel) From Final8.dat Revised - June 1999 by S2 (Wood/Patel) For Option 1, Based on Model SDIE.DAT REVISED - MAY, 1998 BY VAS TO INCORPORATE INCREASE OF SUBBASIN RETENTION AND REVISED - MAY, 1998 BY VAS TO INCORPORATE INCREASE OF SUBBASIN RETENTION AND REVISED - MAY, 1998 BY VAS TO INCORPORATE INCREASE OF SUBBASIN RETENTION AND REVISED - MAY, 1998 BY VAS DA	PAGE 11
506 507 508 509 511 512 513 512 513 514 515 516 517 518 519 520 521 522 524 525 526 527 523 524 525 526 527 522 523 524 525 526 527 533 534 535 535 535 535 535 535 536 537 538 535 536 537 538 535 536 537 538 535 536 537 538 535 536 537 538 535 537 538 535 536 537 538 535 537 538 535 536 537 538 535 536 537 538 535 536 537 538 535 536 537 538 535 536 537 538 535 536 537 538 535 536 537 538 535 536 537 538 535 536 537 538 535 536 537 538 535 536 537 538 535 536 537 538 535 536 537 538 535 536 537 538 535 536 537 538 535 536 537 538 535 536 537 538 535 536 537 538 535 536 537 535 536 537 535 536 537 535 536 537 535 536 537 535 536 537 535 536 537 535 536 537 536 537 535 536 537 536 537 536 537 536 537 536 537 536 537 536 537 536 537 536 537 535 536 537 535 555 542 542 542 542 542 542 542 542 54		<pre>THIS MODEL WAS ORIGINALLY MIDDOUT.DAT IT HAS BEEN MODIFIED BY CPE (7/2000) FOR ALTERNATIVE 2 FOR THE EAST MARICOPA FLOOWAY CAPACITY MITIGATION AND MULTI-USE CORRIDOR STUDY TO ROUTE BOTH THE POWERLINE FLOOWAY AND THE SANTAN FREEWAY CHANNEL INTO THE RAY BASIN PRIOR THEIR OUTFALL INTO THE EMF </pre>	PAGE 11
506 507 508 509 510 511 512 513 515 516 517 518 515 516 517 518 522 523 524 525 524 522 524 525 524 522 523 524 525 524 525 531 532 533 533 533 533 533 533 534 533 534 533 534 535 541 542 543 545 544 545 544 545 546 550 551 552 553		<pre>THIS MODEL WAS ORIGINALLY MIDDOUT.DAT IT HAS BEEN MODIFIED BY CPE (7/2000) FOR ALTERNATIVE 2 FOR THE EAST MARICOPA FLOOWAY CAPACITY MITIGATION AND MULTI-USE CORRIDOR STUDY TO ROUTE BOTH THE POWERLINE FLOOWAY AND THE SANTAN FREEWAY CHANNEL INTO THE RAY BASIN PRIOR THEIR OUTFALL INTO THE SANTAN FREEWAY CHANNEL INTO THE RAY BASIN PRIOR THEIR OUTFALL INTO THE BOTH Model files changed by Collins/Pina Engineering to reflect multi-use design concepts (recreation and environment) proposed throughout the entire EMF Corridor. July 2000 VERSION 8.06 CPE 7/31/00</pre>	PAGE 11

1

554 ID 555 ID FLOWS FROM DETENTION BASIN LOCATED AT NE CORNER OF ELLIOT AND ELLSWORTH ROADS

650 651	JD * ** *	2.97 ******	*******	* * * * * * *	HEC-1	INPUT	* * * * * * * * *	******	******	******	****	PAGE 13
650 651	JD * ** *	2.9/ *****	******	* * * * * * * *	******	******	* * * * * * * * *	******	******	******	* * * *	
650 651	JD * **	******	******	*******	******	******	* * * * * * * * *	******	******	******	* * * *	
650 651	.TD	· · · ·	1 . 1 . 1 . 1 /									
650	JD	3.00	120.0 150.0									
649	JD	3.05	90.0									
648	JD	3.10	60.0									
040 647	JD	3.38 3.24	10.0 30.0									
645	JD	3.49	5.0									
644	JD	.983 3.58	1.0	. 989	.992	. 295	. 998	T.000				
642 643	PC	.953	.956	.959	.962	.965	.968	.971	.974	.977	.980	
641	PC	.913	.918	.922	.926	.930	.934	.938	.942	.946	.950	
640	PC	. / 35	. / 58 . 863	. 7 7 6	. /91 .875	.881	.887	.025 .893	.034	.042 .903	.049	
638	PC	.181	.191	.203	.218	.236	.257	.283	.387	.663	.707	
637	PC	.110	.115	.120	.126	.133	.140	.147	.155	.163	.172	
636	PC PC	.029	.032	.035	.038	.041	.044	.048 .090	.052	.056	.060	
634	PC	.000	.002	.005	.008	.011	.014	.017	.020	.023	.026	
633	JD	3.60	0.01									
631 632	IO	5										
630	IT	5	1APR97	0000	600							
029	*DIA	GRAM MC	UHPZ SE M	55A ADMP	- 5001H	OF SUPE	KSTITION	v rwr, fu	IUKE CON	DITIONS		
628	ID				0.0	0.0				DIMINI		
627	ID	NOIE	SUPERSTIT	ION FREE	WAY.	117 660	L I U INE	OKI FLUW	5 ACRUSS	1115		
625 626	ID TD	NOTE	MUST USF	NDIBE DO	S AS THF	DSS FTT	Е ТО ТМІ	ORT FI.OW	S ACROSS	THE		
624	ID											
623	ID	*****	********	*******	*******	******	******	*******	******	******	****	
622	TD	NOTE: 1	MUST USE 1 SUPERSTIT	NEBUILD. ION FREE	USS AS TI WAY.	HE USS F	ILE TO 1	LMPORT FL	OWS ACRO	SS THE		
620	ID	*****	*******	*******	*******	*******	*******	*******	*******	*******	****	
619	ID	**** T	HE FOLLOW	ING NOTE	WAS ADD	ED BY PR	IMATECH	ENGINEER	S ON 06-	12-2001	* * * *	
617 618	ID	*****	********	*******	*******	*******	*******	*******	*******	******	****	
616	ID	SUGGES	TED ALTER	NATIVES	(JULY 1,	1997)						
615	ID	VELOCI	TIES FOR A	ADMP IMP	ROVEMENT	CHANNEL	S FROM I	DIBBLE AN	D ASSOCI	ATES		
613 614	ID	CHANNE	L, 3 FT/S	EC FOR R	OAD AND	GRASS CH	ANNEL,]	LOFT/SEC	FOR CONC	RETE CHA	NNEL	
612	ID	ASSUME	D VELOCIT	Y OF 1 F	T/SEC FO	R SHEET	FLOW, 2-	-3 FT/SEC	FOR WAS	H/NATURA	L	
611	ID	DISTRI	CI OF MAR	LCOPA CO	UNTI, DE	CEMBER -	лога 18	195.				
609 610	ID	HYDROL	OGY BRANC	H ENGINE	ERING DI	VISION,	FLOOD CO	ONTROL				
608	ID	AND AM	IR MOTAME	OI OF TH	E FLOOD	CONTROL	DISTRICT	г л.				
607	ID	DAVID	AL STUDY : DEGERNESS	OCT-DE	с, 1996)	. REVIEW	ng and <i>I</i> Ed by V <i>I</i>	AFSHIN AH ALERIE A.	SWICK	, UPDATE	n RI	
606	TD	OBTOTA	AT OTTINY		D DV 770	A C VOT		DOUTN P'		IIDDAGO	D DV	
LINE	ID	1.	2	3	4	5	6	7	8	9	10	
					HEC-1	INPUT						PAGE 12
605	ID	1112 110					Dofi					
604	ID	DATED THE NO	1994 AA TECHNI	CAL MEMO	RANDUM N	DAA ATLA	S 2 DEPT	TH AREA R	ATIOS			
602	ID	EVALUA	TED BASED	ON FIEL	D INVEST	IGATION,	USGS MA	APS, LAND	IS AERIA	L SURVEY	S	
601	ID	APPROX	IMATE DIR	ECTION,	LOCATION	, AND LE	NGTH OF	THE WASH	ES HAVE	BEEN		
599 600	ID ID	GREEN . NORMAT.	AND AMPT DEPTH ST	INFILTRA' DRAGE CH	ANNEL ROL	ATION US UTING	ED FOR (CALCULATI	NG LOSSE	S		
598	ID	S-GRAP	H HYDROGR	APH	TTON	MITON		13 1 0111	NG 1022-	c		
597	ID	SCS TY	PE II RAII	NFALL DI	STRIBUTI	ON	CI NUDEL	- 115C-1 D	35P	100 VER	1.0	
595 596	ID	METHOD	CORPS OF	ENGINEE	RS FLOOD	HYDROTO	GY MODET	HEC-1 P	ATED SPD	1990 1780	4 0	
594	ID											
593	ID	RANGE .	NUGRINGU	. KOUIIN	G NOIEPS	WERE AD	1 12101	C DE WII	TTIN TUR	JUGGEDIE	2	
591 592	ID TD	DATA FI EMF	NUSKINCI	JEEN CRE	EK ADMS 1 G NSTEPS	WERE AD	ADDED 1	TO CALCUL	ATE FLOW	S INTO T SUGGESTE	HE D	
590	ID									-		
589	ID	AND EA	ST OF THE	CAP	PROM							
587 588	ID JD	AREAL I	REDUCTION	JDES TNF	CD HYDRO	NORTH O	UAL F THE ST	JPERSTITI	ON FREEW	AY		
586	ID	100-YE	AR 24-HOU	R FREQUE	NCY							
585	ID	CONDIT										
583 584	ID	CONDIT	DDEL USES	A Kn VA	LUE OF 0	.09 FOR	DESERT I	LAND USE	DUE TO S	HEET FLO	W	
582	ID	TOTAL	DRAINAGE	AREA IS	APPROXIM	ATELY 21	3 SQ. MI	E.				
581	ID	THIS M	ODEL REPRI	ESENTS T	HE FUTUR	E CONDIT	ION OF 7	THE WATER	SHED.			
579	ID	FILENA	ME: SDIB	B.DAT								
578	ID	******	*******	******	*******	*******	*******	*******	******	******	****	
577	ID	FUTUR	E CONDITI	ONS AND :	HAVE RET	ENTION V	A, SUB, OLUMES F	FOR THE 1	00YR 2HR	STORM	D AS	
575 576	ID	THEY :	LIE IN THE	SANTAN	MOUNTAI	NS AND W	ON'T GET A 80B	DEVELOP	ED 818 סיג	ד M∩רדי		
574	ID	BECAU	SE THEY L	IE IN PI	NAL COUN	TY AND W	E DONT F	NOW PINA	L COUNTI	ES PLANS	OR	
573	ID	SOME	QUEEN CRE	EK SUBBA	SINS WIL	L ALSO N	OT HAVE	RETENTIO	N VOLUME	S, EITHE	R	
571 572	ID	SIMIL	AR TO THE	EXISTIN	G CONDIT	IONS LAN	DUSES.	העםמוזם מו	TNG 75	798 705	785	
570	ID	CHANG	ED BECAUS	E IT WAS	FELT TH	AT THEIR	FUTURE	CONDITIC	NS LANDU	SES WOUL	D BE	
569	ID	SUBBA:	SINS 75.	NI'ION*** 79A, 79B	, 78E.	LANDUSES	WERE NO	*****)T	~ * * * * * * *	~ <i>* *</i> * * * *	~ * * *	
567	ID											
566	ID	*****	* * * * * FUTU	RE CONDI	TION MOD	EL OF TH	E WATERS	SHED****	******	******	* * * *	
564 565	ID	SOUTHE.	AST MESA 1	HIGH RES	OLUTION	MODEL						
563	ID	AUGUST	1997	JFERGILI	1014 (0.3	. HWI 00	,					
561 562	ID	EAST M	ESA AREA	DRAINAGE	MASTER	PLAN HWV 60)					
560	ID	22 0011		1 1 2011 1		Diami						
559	TD	DD COM	DINED MIT	T DI ON T	I WILL B.	DDAW	SOUTH 1	IU SUBBAS	IN JOH N		1 11100	
558 559	ID	SANTAN	FREEWAY	ALIGNMEN'	WTTT D	F ROUTED	0.0 × × × × ×		TN 70A W	HERE THE	V WTT.T.	
556 557 558 559	ID ID ID	WILL B	E ROUTED	SOUTHW BY A CHAI	NNEL TO '	THE EMF.	FLOWS F	ROM SUBB	ASINS AD	JACENT T	HEY O V WTLL	

LINE

1

1

652 653 654 655 656 657	KK KM KM KM BA	04A BASIN THE F L=0.5 PHOEN 0.051	BASIN 04A OLLOWING 4 Lca= IX VALLH	G PARAMET =0.22 EY S-GRAPI	ERS WERE S= 2 H WAS US	PROVID 4.1 Kn ED FOR 7	ED FOR TH = .030 L THIS BASI	IS BASIN AG= 10. N	5			
658	LG	0.23	0.15	8.85	0.07	61 55	15	5	0	0	0	
660	UI	Ő	0	0	0	0	0	Ő	Ő	Ő	0	
662	UI	0	0	0	0	0	0	0	0	0	0	
663	UI * *	0	0	0	0	0	0	0	0	0	0	
664 665	КК КМ	RET04A RETAIN	DIVERT 100 YR 2	2 HR RUNO	FF VOLUM	E						
666 667	DT DI	04ARET 0	5.13 10000	0								
668	DQ * *	0	10000									
669 670	КК КМ	75 BASIN	BASIN 75									
671 672	KM	THE F	OLLOWING	PARAMET	ERS WERE	PROVIDI	ED FOR TH	IS BASIN	1			
673	KM	PHOEN	IX VALLI	EY S-GRAPI	H WAS US	ED FOR 7	THIS BASI	N	-			
675	LG	0.438	0.15	8.85	0.09	80						
676	UI UI	0 263	43 205	86 129	185 75	240 62	298 43	398 21	534 13	417	334 13	
678 679	UI	13	0	0	0	0	0	0	0	0	0	
680	UI * *	0	0	0	0	0	0	0	0	0	0	
681 682 683	KK KM HC *	CP23 COMBIN 2	COMBINE E HYDROG	BRAPHS 75	AND BAS	IN RETO4	1A					
684	KK	73A										
685 686	KM KM	BASIN THE F	73A OLLOWING	F PARAMET	ERS WERE	PROVID	ED FOR TH	IS BASIN				
687	KM	L= PHOEN	2.3	Lca=	1.0 H WAS US	S= 34	.9 Kn= .	093 LAG	= 94.5			
689	BA	.95	IN VADDI			LD FOR .	INIO DADI	14				
690	UI	.35 34.	.36	5.00 34.	.27 34.	.00 84.	117.	134.	158.	171.	185.	
692 693	UI UI	197. 332.	214. 303.	232. 282.	254. 263. HEC-1	274. 240. INPUT	317. 220.	381. 202.	429. 185.	424. 169.	369. 157.	PAGE 14
LINE	ID.	1.	2	3.	4.	5	6.	7.	8.	9.	10	
LINE 694	ID. UI	1.	107.	3. 90.	4. 60.	5 60.	6. 57.	7.	8. 54.	9.	10	
LINE 694 695 696	ID. UI UI UI	1. 134. 34. 10.	107. 34. 10.	90. 90. 16. 10.	60. 10. 10.	60. 60. 10. 10.	6. 57. 10. 10.	7. 55. 10. 0.	8. 54. 10. 0.	9. 34. 10. 0.	10 34. 10. 0.	
LINE 694 695 696 697	ID. UI UI UI * *	134. 34. 10. 0.	107. 34. 10. 0.	90. 16. 10. 0.	60. 10. 10. 0.	60. 10. 10. 0.	57. 57. 10. 10. 0.	7. 55. 10. 0. 0.	54. 10. 0. 0.	34. 10. 0. 0.	10 34. 10. 0. 0.	
LINE 694 695 696 697 698 698	ID. UI UI UI * * KK	1. 134. 34. 10. 0. 73ATB	2. 107. 34. 10. 0. ROUTE	90. 16. 10. 0.	60. 10. 10. 0.	60. 10. 10. 0.	6. 57. 10. 10. 0.	7. 55. 10. 0. 0.	8. 54. 10. 0. 0.	9. 34. 10. 0. 0.	10 34. 10. 0. 0.	
LINE 694 695 696 697 698 699 700 701	ID. UI UI UI * * KK KM KM KM	1. 134. 10. 0. 73ATB ROUTE : MERIDI	2 107. 34. 10. 0. ROUTE FLOW FRO AN ROAD	90. 16. 10. 0. M BASIN TO MOUNT	4. 60. 10. 10. 0. 73A THRO AIN ROAD	5 60. 10. 10. 0. 0. UGH THE	6. 57. 10. 10. 0. MOUNTAIN	7. 55. 10. 0. 0.	8. 54. 10. 0. 0. DEVELOP	9. 34. 10. 0. 0. EMENT FR(10 34. 10. 0. 0.	
LINE 694 695 696 697 698 699 700 701 702	ID. UI UI UI * * KK KM KM RS RC	134. 34. 10. 0. 73ATB ROUTE : MERIDI. 2 0.045	2 107. 34. 10. 0. ROUTE FLOW FRC AN ROAD FLOW 0.040	90. 16. 10. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	4. 60. 10. 10. 0. 73A THRO AIN ROAD 2830	5 60. 10. 10. 0. 0. 0.0050	6. 57. 10. 10. 0. MOUNTAIN 0.00	7. 55. 10. 0. 0. HEIGHTS	8. 54. 10. 0. 0. DEVELOP	9. 34. 10. 0. 0. 0.	10 34. 10. 0. 0.	
LINE 694 695 696 697 698 699 700 701 702 703 704	ID. UI UI UI * * KK KM RS RC RX RY	134. 34. 10. 0. 73ATB ROUTE I MERIDI 2 0.045 0.00 4.00	2 107. 34. 10. 0. FLOW FRC AN ROAD FLOW 0.040 5.00 3.00	90. 16. 10. 0. M BASIN 7 TO MOUNT: -1 0.045 10.00 2.50	60. 10. 10. 0. 73A THRO AIN ROAD 2830 20.00 0.00	5 60. 10. 10. 0. 0. 0. 10. 120.00 0.00	6. 57. 10. 10. 0. MOUNTAIN 0.00 130.00 2.50	7. 55. 10. 0. 0. * HEIGHTS 135.00 3.00	8. 54. 10. 0. 0. DEVELOP 140.00 4.00	9. 34. 10. 0. 0. EMENT FRO	10 34. 10. 0. 0.	
LINE 694 695 696 697 698 699 700 701 702 703 704	ID. UI UI UI K KK KK KK KK KK KK KK KZ RZ RY X *	1. 134. 34. 0. 0. 73ATB ROUTE : MERIDI. 2 0.045 0.00 4.00	2 107. 34. 10. 0. FLOW FRC AN ROAD FLOW 0.040 5.00 3.00	3. 90. 16. 10. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	4. 60. 10. 10. 0. 0. 73A THRO AIN ROAD 2830 20.00 0.00	5 60. 10. 10. 0. 0. 0. 0. 0. 0. 0.0050 120.00 0.00	6. 57. 10. 0. 0. MOUNTAIN 0.00 130.00 2.50	7. 55. 10. 0. 0. HEIGHTS 135.00 3.00	8. 54. 10. 0. 0. DEVELOP 140.00 4.00	9. 34. 10. 0. 0.	10 34. 10. 0. 0.	
LINE 694 695 696 697 698 699 700 701 702 703 704 705 705	ID. UI UI UI * KK KM KM KS RC RY RY * * *	1. 134. 34. 0. 0. 73ATB ROUTE : MERIDI. 2 0.045 0.00 4.00 73B BASIN	2 107. 34. 10. 0. FLOW FRC AN ROAD FLOW 0.040 5.00 3.00 BASIN 73B	3. 90. 16. 10. 0. 50. 51. 0.045 10.000 2.50	4. 60. 10. 10. 0. 73A THRO AIN ROAD 2830 20.00 0.00	5 60. 10. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	6. 57. 10. 0. MOUNTAIN 0.00 130.00 2.50	7. 55. 0. 0. HEIGHTS 135.00 3.00	8. 54. 10. 0. 0. DEVELOP 140.00 4.00	9. 34. 10. 0. 0.	10 34. 10. 0. 0.	
LINE 694 695 696 697 698 699 700 701 702 703 704 705 706 707	ID. UI UI UI * * KK KM KM RS RC RY RY * * KK KK KK KK	1. 134. 34. 10. 0. 73ATB ROUTE : MERIDI. 2 0.045 0.000 4.00 73B BASIM THE F	2. 107. 34. 10. 0. FLOW FRC AN ROAD FLOW 0.040 5.00 3.00 BASIN 73B	3. 90. 16. 10. 0. 50 MBASIN TO MOUNT. -1 0.045 10.00 2.50	4. 60. 10. 10. 0. 73A THRO AIN ROAD 2830 20.00 0.00		6. 57. 10. 0. MOUNTAIN 0.00 130.00 2.50	7. 55. 0. 0. HEIGHTS 135.00 3.00	8. 54. 0. 0. DEVELOP 140.00 4.00	9. 34. 0. 0.	10 34. 10. 0. 0.	
LINE 694 695 696 697 700 700 700 700 702 703 704 705 706 707 708 709	ID. UI UI UI * * KM KM KM KM KM KM KM	1. 134. 34. 10. 0. 73ATB ROUTE : MERIDI. 2 0.045 0.00 4.00 73B BASIM THE FU L=0.5 PHOEN	2. 107. 34. 10. 0. ROUTE FLOW FRC AN ROAD FLOW O.040 5.00 3.00 BASIN 73B OLLOWING 6 LCa=(1X VALL)	3. 90. 16. 10. 0. 50 MBASIN TO MOUNTI -1 0.045 10.000 2.50 5 PARAMETI 0.28 S=33 Y S-GRAP!	4. 60. 10. 10. 0. 73A THRO AIN ROAD 2830 20.00 0.00 0.00 ERS WERE 0.4 Kn= 4 WAS US	0.0050 0.0050 0.0050 0.0050 0.000 0.000 0.000 0.000 0.000 0.000	6. 57. 10. 0. 0. MOUNTAIN 0.00 130.00 2.50 ED FOR TH .AG=14.9 THIS BASI	7. 55. 0. 0. HEIGHTS 135.00 3.00 IS BASIN N	8. 54. 0. 0. DEVELOP 140.00 4.00	9. 34. 10. 0. 0.	10 34. 10. 0. 0.	
LINE 694 695 696 697 700 701 702 703 704 705 706 707 708 709 711	ID. UI UI UI * * KK KM KM KM KM KM KM KM KM KM KM KM KM	1. 134. 34. 10. 0. 73ATB ROUTE : MERIDI. 2 0.045 0.00 4.00 73B BASIM THE FU L=0.5 PHOEN 0.425 0.25	2. 107. 34. 10. 0. ROUTE FLOW FRC AN ROAD FLOW FRC AN ROAD FLOW 0.040 0.040 5.00 3.00 BASIN 73B OLLOWING 6 LCa=(IX VALLE) 0.25	3. 90. 16. 10. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	4. 60. 10. 10. 0. 73A THRO AIN ROAD 2830 20.00 0.00 0.00 ERS WERE 0.4 Kn= H WAS US 0.27	0.0050 0.0050 0.0050 0.0050 0.0000 0.0000 0.00000 0.000000 0.00000 0.00000 0.0000 0.0000 0.0000 0.00000 0.000	6. 57. 10. 0. 0. MOUNTAIN 0.00 130.00 2.50 ED FOR TH .AG=14.9 THIS BASI	7. 55. 0. 0. HEIGHTS 135.00 3.00 IS BASIN N	8. 54. 0. 0. DEVELOP 140.00 4.00	9. 34. 10. 0. 0.	10 34. 10. 0. 0.	
LINE 694 695 696 697 700 701 702 703 704 705 706 707 708 709 710 711 712 712	ID. UI UI * * KK KM KM KM KM KM KM KM KM KM KM KM KM	1. 134. 34. 10. 0. 73ATB MERIDI 2 0.045 0.000 4.00 73B BASIM THE FI L=0.5 PHOEN 0.425 0.25 169 0	2. 107. 34. 10. 0. ROUTE FLOW FRC FLOW FRC NOAD FLOW 0.040 5.00 3.00 BASIN 73B OLLOWINC 6 LCa=(IX VALLE 0.25 530 0	3. 90. 16. 10. 0. 50 50 50 50 50 50 50 50 50 50 50 50 50	4. 60. 10. 0. 73A THRO AIN ROAD 2830 20.00 0.00 2830 0.00 0.00 ERS WERE 0.4 Kn= H WAS US 0.27 829	0.0050 0.0050 0.0050 0.0050 0.000 0.000 PROVIDI 0.040 I ED FOR 7 30 481	6. 57. 10. 0. 0. MOUNTAIN 0.00 130.00 2.50 2.50 2.50 2.50 2.50 2.50 2.50	7. 55. 0. 0. HEIGHTS 135.00 3.00 IS BASIN N	8. 54. 0. 0. DEVELOP 140.00 4.00	9. 34. 0. 0. 0. EMENT FR(10 34. 10. 0. 0. 0.	
LINE 694 695 696 697 700 701 702 703 704 705 706 707 708 709 710 711 712 713	ID. UI UI UI UI UI VI * * * KK KK KM KM KM KM KM KM KM KM KM KM KM	1. 134. 34. 10. 0. 73ATB ROUTE : MERIDI. 2 0.045 0.00 4.00 73B BASIN : THE F L=0.5 PHOEN 0.425 0.25 169 0 0	2 107. 34. 0. ROUTE FLOW FR(AN ROAD FLOW 0.040 5.00 3.00 BASIN 73B 0LLOWING 6 LCa=(1X VALLI 0.25 530 0	3. 90. 16. 10. 0. 0. 0. 0. 0. 0. 2. 50 3 PARAMETI 0.28 S=3: 5. 5. 40 973 0 0	2830 20.00 0.00 0.00 0.00 0.00 0.00 0.00 0		6. 57. 10. 10. 0. MOUNTAIN 0.00 130.00 2.50 ED FOR TH .AG=14.9 FHIS BASI 180 0	7. 55. 10. 0. HEIGHTS 135.00 3.00 IS BASIN N 73 0	8. 54. 10. 0. 0. DEVELOP 140.00 4.00	9. 34. 10. 0. 0. EMENT FRO	10 34. 10. 0. 0. 0. 0.	
LINE 694 695 696 697 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714	ID. UI UI VI * * KK KM KM KM KM KM KM KM KM KM KM KM KM	1. 134. 34. 10. 0. 73ATB ROUTE : MERIDI. 2 0.045 0.00 4.00 73B BASIN THE FI L=0.5 PHOEN 0.425 0.25 169 0 RET73B RET73B	2. 107. 34. 0. ROUTE FLOW FRC AN ROAD FLOW 0.040 5.00 0.00 BASIN 73B 0.LOWINC 6 LCa=(IX VALH 0.25 530 0 DIVERT	3. 90. 10. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0			6. 57. 10. 10. 0. MOUNTAIN 0.00 130.00 130.00 2.50 ED FOR TH .AGE14.9 FHIS BASI 180 0	7. 55. 10. 0. HEIGHTS 135.00 3.00 IS BASIN N 73 0	8. 54. 10. 0. DEVELOP 140.00 4.00	9. 34. 10. 0. 0. EMENT FRO	10 34. 10. 0. 0. 0. 0.	
LINE 694 695 696 697 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716	ID. UI UI UI * * KK KM KM KM KM KM KM KM KM KM KM KM KM	1. 134. 34. 10. 0. 73ATB ROUTE : MERIDI. 2 0.045 0.000 4.00 73B BASIN 74E F L=0.5 PHOEN 0.425 0.25 169 0 RET73B RET73B RET73B	2. 107. 34. 0. ROUTE FLOW FRCAN ROAD FLOW 0.040 5.00 0.040 5.00 0.040 5.00 0.025 530 0 DIVERT 80% OF 39.41 39.41	3. 90. 16. 10. 0. 50 BASIN ' 10.00 2.50 5 PARAMETI 0.28 S=3 540 973 0 71HE 100 ' 0.0			6. 57. 10. 10. 0. MOUNTAIN 0.00 130.00 130.00 2.50 ED FOR TH .AG=14.9 THIS BASI 180 0 2000 20	7. 55. 10. 0. HEIGHTS 135.00 3.00 IS BASIN N 73 0	8. 54. 10. 0. 0. DEVELOP 140.00 4.00	9. 34. 10. 0. 0. EMENT FRO	10 34. 10. 0. 0. 0. 0.	
LINE 694 695 696 697 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718	ID. UI UI UI UI UI X KK KK KK KK KK KK KK KK KK KK KK KK K	1. 134. 34. 10. 0. 73ATB ROUTE : MERIDI. 2 0.045 0.0045 0.0045 0.045 0.045 0.045 0.25 160 0.25 160 0.025 0.005 0.000 0.000 0.005 0.005 0.005 0.005 0.005 0.005 0.025 0.005	2 107. 34. 0. ROUTE FLOW FRCAN ROAD FLOW 0.40 5.00 0. 0. BASIN 73B 0. 0. 0. DIVERT 80% of 39.41 10000 10000	3. 90. 16. 10. 0. 200 BASIN ' 10.00 2.50 3 PARAMETI 0.28 S=3 540 973 0 7 0 7 1 1 1 0.00 5 5 9 7 0 0 7 0 0 7 0 0 7 0 0 7 0 0 7 1 1 1 0 0 1 0 1	Contemporation of the second s		6. 57. 10. 10. 0. MOUNTAIN 0.00 130.00 2.50 ED FOR TH .AG=14.9 FHIS BASI 180 0 70LUME	7. 55. 10. 0. HEIGHTS 135.00 3.00 IS BASIN N 73 0	8. 54. 10. 0. DEVELOP 140.00 4.00	9. 34. 10. 0. 0. EMENT FRO	10 34. 10. 0. 0. 0. 0.	
LINE 694 695 696 697 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718	ID. UI UI UI VI * * KK KK KK KK KK KK KK KK	1. 134. 34. 10. 0. 73ATB ROUTE : MERIDI. 2 0.045 0.00 4.00 73B BASIN THE F L=0.5 PHOEN 0.425 0.25 169 0 0 RET73B RET73B RETAIN 73BRET 0 0 0 0 0 0 0 0 0 0 0 0 0	2. 107. 34. 10. 0. ROUTE FLOW FRCA PLOW FOR 5.00 3.00 BASIN 73B OLLOWING 6 Lca= 1X VALLI 0.25 530 0 DIVERT 80% OF 39.41 10000	3. 90. 16. 10. 0. TO MOUNT. -1 0.045 10.00 2.50 S PARAMETI 0.28 S=31 SY S-GRAPI 5.40 973 0 THE 100 V 0.0	4. 60. 10. 10. 0. 2830 20.00 0.00 2830 20.00 0.00 829 0.4 Kn= H WAS US 0.27 829 0 0	0.0050 0.0050 120.00 0.0050 120.00 0.000 PROVIDI 0.040 II ED FOR 7 30 481 0 RUNOFF V	6. 57. 10. 0. MOUNTAIN 0.00 130.00 2.50 ED FOR TH 1.AG=14.9 THIS BASI 180 0	7. 55. 10. 0. 135.00 3.00 IS BASIN N	8. 54. 0. 0. DEVELOP 140.00 4.00	9. 34. 0. 0. 0. EMENT FR(10 34. 10. 0. 0. 0. 0.	
LINE 694 695 696 697 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718	ID. UI UI UI X KK KK KM KM KM KM KM KM KM KM KM KM KM	1. 134. 34. 10. 0. 73ATB ROUTE : MERIDI. 2 0.045 0.00 4.00 73B BASIN THE F L=0.5 L=0.5 L=0.5 0.02 169 0 0 RET73B RET73B RETAIN 73BRET 0 0 0 CP73B	2. 107. 34. 10. 0. ROUTE FLOW FRC AN ROAD FLOW 0.040 5.00 3.00 BASIN 73B OLLOWING 6 Lca= IX VALLH 0.25 530 0 DIVERT 80% OF 39.41 10000 10000 COMBINE	3. 90. 16. 10. 0. 70 MOUNT: -1 0.045 10.00 2.50 3 PARAMETI 0.28 S=3 SY S-GRAPJ 5.40 973 0 THE 100 V 0.0	4. 60. 10. 10. 0. 2830 20.00 0.00 2830 20.00 0.00 8230 0.00 829 0.4 Kn= H WAS US 0.27 829 0 0	0.0050 0.0050 120.00 0.0050 120.00 0.000 PROVIDI 0.040 II ED FOR 7 30 481 0 RUNOFF V	6. 57. 10. 0. 0. 10. 0. 130.00 2.50 ED FOR TH JAG=14.9 THIS BASI 180 0	7. 55. 10. 0. 135.00 3.00 IS BASIN N	8. 54. 0. 0. DEVELOP 140.00 4.00	9. 34. 0. 0. EMENT FR(10 34. 10. 0. 0. 0. 0.	
LINE 694 695 696 697 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721	ID. UI UI UI VI * * KK KK KK KK KK KK KK KK	1. 134. 34. 10. 0. 73ATB ROUTE : MERIDI. 2 0.045 0.00 4.00 73B BASIN THE F L=0.5 L=0.5 D 0.02 169 0 0 RET73B RET73B RETAIN 73BRET 0 0 CP73B 2 COMBIN. 2	2. 107. 34. 10. 0. ROUTE FLOW FRC FLOW FRC NO 0400 5.00 3.00 BASIN 73B OLLOWING 6 Lca= IX VALLH 0.25 530 0 DIVERT 80% OF 39.41 10000 10000 COMBINE E HYDROG	3. 90. 16. 10. 0. 10. 0. 10. 0.045 10.00 2.50 3 PARAMETI 0.28 S=3 5.40 973 0 5.40 973 0 THE 100 7 0.0 5.40	Contemporation of the second s	0.0050 0.0050 120.00 0.0050 120.00 0.000 PROVIDI 0.040 II ED FOR 7 30 481 0 RUNOFF Y BASIN 7:	6. 57. 10. 0. 0. 130.00 130.00 2.50 ED FOR TH JAG=14.9 THIS BASI 180 0 70LUME	7. 55. 10. 0. 135.00 3.00 IS BASIN N	8. 54. 0. 0. DEVELOP 140.00 4.00	9. 34. 0. 0. EMENT FR(10 34. 10. 0. 0. 0. 0.	
LINE 694 695 696 697 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721	ID. UI UI UI VI * * KK KK KK KK KK KK KK KK	1. 134. 34. 10. 0. 73ATB ROUTE : MERIDI. 2 0.045 0.00 4.00 73B BASIN THE F L=0.5 PHOEN 0.425 0.25 169 0 0 RET73B RETAIN 73BRET 0 0 CP73B COMBIN 2	2. 107. 34. 10. 0. ROUTE FLOW FRC FLOW FRC NO 0.040 5.00 3.00 BASIN 73B OLLOWING 6 Lca= IX VALLH 0.25 530 0 DIVERT 80% OF 39.41 10000 10000 COMBINE E HYDROG	3. 90. 16. 10. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Contemporation of the second s	0.0050 0.0050 0.0050 0.0000 0.0000	6. 57. 10. 0. 0. 10. 0. 130.00 2.50 ED FOR TH 130.20 2.50 ED FOR TH 14.36=14.9 THIS BASI 180 0	7. 55. 10. 0. 135.00 3.00 IS BASIN N 73 0	8. 54. 0. 0. DEVELOP 140.00 4.00	9. 34. 0. 0. EMENT FR(10 34. 10. 0. 0. 0. 0.	
LINE 694 695 696 697 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721	ID. UI UI UI VI * * KK KK KK KK KK KK KK KK	1. 134. 34. 10. 0. ROUTE : MERIDI. 2 0.045 0.00 4.00 73B BASIN THE F L=0.5 PHOEN 0.425 0.25 169 0 0 RET73B RETAIN 73BRET 0 0 CP73B COMBIN 2	2 107. 34. 10. 0. ROUTE FLOW FRC AN ROAD FLOW FRC AN ROAD FLOW O. 0.40 5.00 0.00 0.100 BASIN 0.250 00 DIVERT 80% OF 39.41 10000 10000 COMBINE E HYDROC	3. 90. 16. 10. 0. 10. 0.045 10.000 2.50 3 PARAMETI 0.28 S=3 5.40 973 0 5.40 973 0 THE 100 7 0.0 5.40	Contemporation of the second s	0.0050 0.0050 0.0050 0.0000 0.0000 0.0	6. 57. 10. 10. 0. MOUNTAIN 0.00 130.00 2.50 ED FOR TH .AG=14.9 THIS BASI 180 0 /OLUME 3B	7. 55. 10. 0. HEIGHTS 135.00 3.00 IS BASIN N 73 0	8. 54. 0. 0. DEVELOP 140.00 4.00	9. 34. 0. 0. EMENT FR(10 34. 10. 0. 0. 0. 0.	
LINE 694 695 696 697 700 701 702 703 704 705 706 707 708 709 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723	ID. UI UI UI VI * * KK KK KK KK KK KK KK KK	1. 134. 34. 10. 0. 73ATB ROUTE : MERIDI. 2 0.045 0.00 4.00 73B BASIN THE F: 169 0. 2 169 0 0 RET73B RETAIN 73BRET 0 0 0 CP73B COMBIN 2 73BTC ROUTE : 73BTC	2 107. 34. 0. ROUTE FLOW FRC AN ROAD FLOW 0.040 5.00 0. 0. BASIN 73B 0. 0. DIVERT 80% OF 39.41 10000 10000 COMBINE E HYDROC ROUTE FLOW THI	3. 90. 16. 10. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Contemporation of the second s	0.0050 0.0050 120.00 0.0050 120.00 0.000 0.000 PROVIDI 0.040 I ED FOR 300 481 0 RUNOFF V BASIN 7: STA DEVU	6. 57. 10. 10. 0. MOUNTAIN 0.00 130.00 130.00 2.50 ED FOR TH .AG=14.9 THIS BASI 180 0 //OLUME 3B	7. 55. 10. 0. HEIGHTS 135.00 3.00 IS BASIN N 73 0	8. 54. 10. 0. DEVELOP 140.00 4.00 30 0	9. 34. 0. 0. 0. EMENT FRO 0 0 0	10 34. 10. 0. 0. 0. 0.	
LINE 694 695 696 697 700 701 702 703 704 705 706 707 708 709 700 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725	ID. UI UI UI UI UI VI * * * * * * * * * * * * * * * * * *	1. 134. 34. 10. 0. 73ATB ROUTE : MERIDI. 2 0.045 0.00 4.00 73B BASIN 73B THE F L=0.5 PHOEN 0.425 0.25 169 169 169 0. 0. 0. 0. 0. 2 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	2 107. 34. 0. ROUTE FLOW FRCAN ROAD FLOW FRCAN FLOW FRCAN COMBINE E HYDROC ROUTE FLOW THH BUTTE F	3. 90. 16. 10. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Contemporation of the second s	0.0050 10. 10. 10. 10. 10. 10. 10. 10	6. 57. 10. 10. 0. MOUNTAIN 0.00 130.00 130.00 2.50 ED FOR TH .AG=14.9 THIS BASI 180 0 ZOLUME 3B ELOPEMENT	7. 55. 10. 0. HEIGHTS 135.00 3.00 IS BASIN N 73 0	8. 54. 10. 0. DEVELOP 140.00 4.00 30 0	9. 34. 0. 0. 0. EMENT FRO 0 0 0 0	10 34. 10. 0. 0. 0. 0.	

726 727 728	RC RX RY *	0.045 0.00 4.00	0.040 5.00 3.50	0.045 10.00 3.00	4500 22.00 0.00	0.0050 122.00 0.00	0.00 134.00 3.00	139.00 3.50	144.00 4.00			
1	*				HEC-1	INPUT						PAGE 15
LINE	ID.	1.	2.		4 .	5.	б.	7.	8	9	10	
729 730 731 732 733 734 735	KK KM KM KM BA LG	73C BASIN THE F L=1.3 PHOEN 0.585 0.25	BASIN 73C OLLOWING 3 Lca=0 IX VALLE 0.25	PARAMETH .30 S=22 Y S-GRAPH 5.40	ERS WERE 2.6 Kn= H WAS US 0.27	PROVIDE 0.040 I ED FOR 1 30	ED FOR TH LAG=22.5 THIS BASI	IS BASIN N				
736 737 738	UI UI UI *	88 31 0	344 27 0	512 26 0	764 0 0	1019 0 0	695 0 0	488 0 0	287 0 0	149 0 0	88 0 0	
739 740 741 742 743	KK DT DI DQ *	RET73C RETAIN 73CRET 0 0	DIVERT 80% OF 37.21 10000 10000	THE 100 Y 0.0	YR 2 HR	RUNOFF N	JOLUME					
744 745 746	KK KM HC *	CP73C COMBIN 2	COMBINE E HYDROG	RAPHS 731	BTC AND	BASIN 73	3C					
747 748 749 750 751 752	KK KM RS RC RX	73T74C ROUTE ENGINE 20 0.032	ROUTE FLOW SOU ERED CHA FLOW 0.032 5	TH ALONG NNEL FROM -1 0.032 10	THE WES 4 WARNER 4670 31	T SIDE (ROAD TO .0024	OF SIGNAL D THE POW	BUTTE R ERLINE F	OAD IN AN LOODWAY. 89 5	1		
753	RY * * *	3.5 ******	3.5	3.5	0	0	3.5 *****	3.5	3.5	******	****	
754 755 756 757 758 759 769	KK KM KM KM * K BA	74A BASIN THE F L= PHOEN 0 2 .75	74A OLLOWING 2.4 IX VALLE 2	PARAMETH Lca= Y S-GRAPH	ERS WERE 1.0 H WAS US	PROVIDE S= 42. ED FOR 1	ED FOR TH .2 Kn= . FHIS BASI	IS BASIN 095 LAG N	= 92.9			
761 762 763 764 765 766 767	UI UI UI UI UI VI *	27. 163. 260. 99. 27. 8. 0.	27. 175. 239. 79. 19. 8. 0.	27. 193. 222. 56. 8. 8. 0.	27. 208. 206. 48. 8. 0.	73. 228. 187. 47. 8. 8. 0.	96. 268. 171. 45. 8. 0.	111. 317. 160. 45. 8. 0. 0.	129. 362. 142. 32. 8. 0. 0.	140. 327. 132. 27. 8. 0. 0.	151. 287. 118. 27. 8. 0. 0.	
LINE	ID.	1.	2.		4.		6.	7.	8	9	10	PAGE 10
768 769 770 771 772 773 774 775	KK KM KM RS RC RX RY *	74ATB ROUTE MOUNTA NORTHW 1 0.013 0.00 6.00	ROUTE FLOW FRO IN ROAD. EST CORN FLOW 0.013 7.00 5.50	M BASIN 7 FLOW EN7 ER OF THH -1 0.013 21.50 5.50	74A VIA TERS THE 5 MERIDI 3200 30.00 0.00	THE POWERLI POWERLI AN ROAD 0.0060 36.00 0.00	ERLINE FL INE FLOOD AND POWE 0.00 44.50 5.50	OODWAY F WAY VIA RLINE FL 59.00 5.50	ROM MERIE A 75FT WE OODWAY IN 66.00 6.00	DIAN ROAL EIR ON TH MTERSECTI) TO HE CON.	
776 777 778 779 780 781	KK KM KM KM BA	74B BASIN THE F L=1.3 PHOEN 0.333	BASIN 74B OLLOWING 1 Lca=0 IX VALLE	PARAMETH .41 S=23 Y S-GRAPH	ERS WERE 3.7 Kn= H WAS US	PROVIDE 0.040 I ED FOR 1	ED FOR TH LAG=24.9 THIS BASI	IS BASIN N				
782 783 784 785	LG UI UI VI *	0.25 45 44 0	0.25 154 18 0	5.80 245 14 0	0.22 330 14 0	30 528 0 0	430 0 0	318 0 0	229 0 0	122 0 0	76 0 0	
786 787 788 789 790	KK KM DT DI DQ *	RET74B RETAIN 74BRET 0 0	DIVERT 80% OF 17.75 10000 10000	THE 100 Y 0.0	YR 2 HR	RUNOFF N	JOLUME					
791 792 793	KK KM HC *	CP74B COMBIN 2	COMBINE E HYDROG	RAPHS 742	ATB AND	BASIN 74	1B					

794 795	KK 74 KM RO	BTC ROUTE	THE POW	ERLINE FL	OODWAY F	ROM MOUN	TAIN ROA	D TO SIGN	AL BUTTE		
796 797	KM RO RS	AD. 1 FLOW	-1								
798	RC 0.	013 0.013	0.013	3100	0.0055	0.00	E0 00	66 00			
800	RX U RY 6	.00 7.00	5.50	0.00	0.00	5.50	59.00	6.00			
	*										
801	кк	74C BASIN									
802	KM BA	SIN 74C	DARAMET	FDS WEDE	PROVIDED	FOR THI	S BASTN				
804	KM L	=1.22 Lca=0	.40 S=2	5.4 Kn=0	.040 LA	G=23.7	5 DADIN				
805	KM P	HOENIX VALLE	Y S-GRAPI	H WAS USE	D FOR TH	IS BASIN					
1	DA U.	515		HEC-1	INPUT						PAGE 17
LINE	ID	12.	3.	4	5	6	7	8	9	10	
807	LG 0	.25 0.17	6.80	0.15	30						
808	UI	48 180	276	386	588	428	310	211	97	65	
810	UI	0 0	0	0	0	0	0	0	0	0	
	*										
811	KK RET	74C DIVERT									
812	KM RE	TAIN 80% OF	THE 100	YR 2 HR R	UNOFF VO	LUME					
813 814	DT 74C DI	0 10000	0.0								
815	DQ	0 10000									
	*										
816	KK CP	74C COMBINE									
817	КМ СО * КО	MBINE HYDROG 2	RAPHS 73	174C, 74E	TC, AND	BASIN 74	C				
818	HC *	3									
	* *****	*******	******	* * * * * * * * *	******	******	******	*******	******	**	
819	KK RET	10B DIVERT									
820	KM RE	TAIN A PORTI	ON OF RA	Y ROAD							
821 822	KM BA KM BA	SINS C & D F SINS OVERFLO	ROM RAY I W INTO P(ROAD IMPR OWERLINE	FLOODWAY	PLANS					
823	DT 10B	RET 5.55	0.0								
824 825	DI	0 10000									
	*										
826	KK 10B	T75									
827 828	KM ROU KM THE	TE FLOW FROM NSTEP FOR T	IN THE HIS ROUT	POWERLINE ING WOULE	FLOODWA	Y FROM R VERGE ON	ET10A TO A VALUE	CP75 AS			
829	KM IT	OSCILLATED B	ETWEEN 3	AND 20.	THE ASSU	MPTION W	AS MADE	OF			
830 831	KM 5 F RS	EET PER SEC 7 FLOW	ACROSS TI -1	HE ROUTIN	IG WHICH	GIVES AN	NSTEP C	F 7.			
832	RC 0.	030 0.013	0.030	10500	.0038						
833 834	RX	0 15	16.5 5.6	25	33	41.5 5.6	43	58 6.6			
	*										
	* *****	******	*******	* * * * * * * * *	******	******	******	******	******	***	
835	KK	02B BASIN									
836 837	KM B	ASIN 02B	PARAMET	ERS WERE	PROVIDED	FOR THI	S BASIN				
838	KM I	=0.83 Lca=0	.17 S=1	4.5 Kn=0	.039 LA	G=16.1					
839	KM P BA O.	HOENIX VALLE 158	Y S-GRAPI	H WAS USE	D FOR TH	IS BASIN					
841	LG 0	.24 0.25	4.96	0.38	59						
842	UI	0 53	170	295	336	201	94	43	15	10	
844	UI	0 0	0	0	0	0	0	0	0	0	
1 845	UI	0 0	0	0 HEC-1	0 INPUT	0	0	0	0	0	PAGE 18
LINE	ID	12.		4		6	7	8	9	10	
846	TT	0 0	n	Ω	n	Ω	n	n	0	n	
010	*	0 0	0	0	0	0	0	0	0	0	
	*										
847	KK RET	02B DIVERT	HP PUNO	FF VOLUME							
849	DT 02B	RET 14.45	0								
850 851	DI	0 10000									
	*										
	*										
852	KK 2	BT1 ROUTE	EXCESS O	ኖ ጥዘም ነበባ	-YEAR ?	-HR STOP	M OVERIA	ND TO			
854	KM DR	AINAGE CORRI	DOR ALON	G SUBBASI	N 1 AND	SUBBASIN	5A BOUN	DARY			
855	RS	12 FLOW	-1	4000	0 0045						
857	RX 0	.00 1	2		2003	2004	2005	2006			
858	RY 1 *	.00 0.75	0.50	0.00	0.00	0.50	0.75	1.00			
	*										
859	KK	01A BASIN									
860 861	KM B	ASIN 01A	PARAMET	TRS WERF	PROVIDEN	FOR THT	S BASIN				
862	KM L	=1.56 Lca=0	.44 S=2	1.2 Kn=0	.060 LA	G=41.9					
863	KM P	HOENIX VALLE	Y S-GRAPI	H WAS USE	D FOR TH	IS BASIN					

KM L=1.56 LCa=0.44 S=21.2 Kn=0.060 LAG=41.9
KM PHOENIX VALLEY S-GRAPH WAS USED FOR THIS BASIN

864 865 866 867 868 869 870	BA LG UI UI UI UI *	0.609 0.10 0 444 15 0 0	0.25 49 375 15 0	0.0001 5.14 57 307 15 0 0	0.37 174 253 15 0	80 236 196 15 0	281 116 15 0 0	335 84 0 0 0	411 74 0 0	580 49 0 0 0	563 40 0 0	
871 872 873 874 875	KK KM KM KM	05A BASIN THE F L=0.9 PHOEN	BASIN 05A OLLOWING 1 Lca=0. IX VALLEY	PARAMETE 39 S=13 S-GRAPH	RS WERE 3.2 Kn=0 I WAS USE	PROVIDED .042 LA D FOR TH	FOR THI G=25.0 IS BASIN	S BASIN				
877 878 879 880 881 882	LG UI UI UI UI VI *	0.188 0.25 0 43 0 0	0.15 25 26 0 0	7.94 85 11 0 0	0.11 138 8 0 0 0	34 186 8 0 0 0	293 0 0 0	245 0 0 0	180 0 0 0	130 0 0 0	71 0 0 0	
					HEC-1	INPUT						PAGE 19
LINE	ID.	1.	2	3	4	5	6	7	8	9	10	
883 884 885 886 887	KK KM DT DI DQ *	RETO5A RETAIN O5ARET O O	DIVERT 100 YR 2 14.25 10000 10000	HR RUNC	OFF VOLUM	E						
888 889 890 891 892 893 894 895 896 897 898 899	KK KM KM BA LG UI UI UI UI UI VI VI *	06A BASIN THE F L=0.7 PHOEN 0.120 0.27 0 7 0 0 0 0 0 0	BASIN 06A DLLOWING 9 LCa=0. IX VALLEY 0.25 35 0 0 0 0 0	PARAMETE 18 S=21 S-GRAPH 5.85 115 0 0 0 0	ERS WERE .5 Kn=0 I WAS USE 0.23 185 0 0 0 0 0	PROVIDED .045 LA D FOR TH 25 261 0 0 0 0	FOR THI G=17.2 IS BASIN 165 0 0 0 0	S BASIN 95 0 0 0 0	38 0 0 0 0	18 0 0 0 0	7 0 0 0 0	
900 901 902 903 904	KK KM DT DI DQ *	RETOGA RETAIN 06ARET 0 0	DIVERT 100 YR 2 10.28 10000 10000	HR RUNOF 0	F VOLUME							
905 906 907 908 909 910 911 912	KK KM KM RS RC RX RY *	6AT1 ROUTE : TERRAC: SUBBAS 19 0.030 0.00 1.07	ROUTE FLOW IN E E ROADWAY IN 1 AND FLOW 0.015 17 0.90	TO THE SUBBASIN -1 0.030 23 0.90	7 THE 100 DRAINAGE 1 5A 3600 28.5 0.00	-YEAR, 2 CORRIDO 0.0011 46.5 1.15	-HR STOR R ALONG 65.5 0.00	M ALONG THE BOUN 71 0.90	THE EVER DARY BET 84 1.78	FON ∜EEN		
913 914 915	KK KM HC *	CP1 COMBIN 4	NE HYDROG	RAPHS 2B	3T1, O1A,	RET05A,	AND 6AT	1.				
916 917 918 919 920 921	KK KM RS RC RX RY *	1T3 ROUTE F: 3 0.035 0.00 2.00	ROUTE LOW FROM FLOW 0.035 2 1.50	CP 1 TO -1 0.035 4 1.00	CP 3 WIT 2548 8 0.00	HIN DRAI 0.0051 42 0.00	NAGE COR 46 1.00	RIDOR. 48 1.50	50 2.00			
					HEC-1	INPUT						PAGE 20
LINE	ID.	1.	2	3	4	5	б	7	8	9	10	
922 923 924 925 926 927 928	KK KM KM KM BA LG	03A BASIN THE F L=0.6 PHOEN 0.056 0.24	BASIN 03A DLLOWING 7 Lca=0. IX VALLEY 0.15	PARAMETE 18 S=22 S-GRAPH 8.36	CRS WERE 2.4 Kn=0 I WAS USE 0.09	PROVIDED .041 LA D FOR TH 51	FOR THI G=14.6 IS BASIN	S BASIN				
929 930 931 932 933	UI UI UI UI *	0 0 0 0	23 0 0 0	72 0 0 0 0	133 0 0 0 0	108 0 0 0	60 0 0 0	22 0 0 0 0	9 0 0 0	4 0 0 0	0 0 0 0	
934 935	KK KM	RET03A RETAIN	DIVERT 100 YR 2	4 HR RUN	IOFF VOLU	ME						

936 937 938 939 940 941	KM KM DT DI DQ *	INCLUDE TOTALIN SITE TO 03RETA 0 0	S TEMPOR IG 1.18 / TALING 5 6.87 10000 10000	RARY BASI AF AND TH 5.69 AF F 0.0	INS BUILT IE BASINS OR A TOT	F ALONG E S BUILT O FAL OF 6.	VERTON (N THE E) 87 AF.	TERRACE DGE CORE				
942 943 944	KK KM HC *	CP3 COMBIN 2	E HYDROG	GRAPHS 1T	3 AND RE	ETO 3A.						
945 946 947 948 949 950	KK KM RS RC RX RY *	3T7A ROUTE F 4 0.030 0 0.8	ROUTE PLOW ALON FLOW 0.015 7.5 0.5	NG ROADWA -1 0.030 8 0	AYS FROM 3854 38 0.6	CP3 TO C .0033 43 0.6	P 7A. 73 0	73.5 0.5	81 0.8			
951 952 953 954 955 956 957 958 959 960 961	KK KM KM BA LG UI UI UI UI UI	08 BASIN THE FC L=1.51 PHOEN1 0.636 0.25 0 427 18 0	BASIN 08 DLLOWING Lca=0. X VALLEY 0.25 57 342 18 0	PARAMETE 82 S=19 2 S-GRAPH 6.00 94 274 18 0	ERS WERE 1.2 Kn=(WAS USE 0.22 225 185 0 0	PROVIDED 0.042 LA ED FOR TH 36 298 101 0 0	G=37.4 IS BASI 360 94 0 0	IS BASIN N 444 57 0 0	630 46 0 0	678 18 0 0	518 18 0 0	
962	UI * *	0	0	0	0	0	0	0	0	0	0	
				-	HEC-1	INPUT		-				PAGE 21
LINE	ID.		2		4	5	6.		8	9	10	
963 964 965 966 967	KK KM DT DI DQ *	RETO8 RETAIN 08RET 0 0	DIVERT 100 YR 2 48.06 10000 10000	2 HR RUNC 0.0	FF VOLUN	4E						
968 969 970 971 972 973	KK KM RS RC RX RY *	8T6B ROUTE F 2 0.030 0 1.1	ROUTE LOW ALON FLOW 0.015 17.0 0.9	NG ROADWA -1 0.030 23.0 0.9	2604 28.5 0.0	CP3 TO C .0047 46.5 1.15	P 7A. 65.5 0	71.0 0.9	84 1.78			
974 975 976 977 978 979	KK KM KM KM BA	06B BASIN THE FC L=0.61 PHOENI 0.103	BASIN 06B DLLOWING Lca=0. X VALLEY	PARAMETE 34 S=16 8 S-GRAPH	RS WERE .4 Kn=(WAS USE	PROVIDED).043 LA ED FOR TH	FOR TH G=20.0 IS BASI	IS BASIN N				
980 981	LG UI	0.25 0	0.15 21	7.58 75	0.12	32 189	162	109	65	30	17	
982 983 984 985	UI UI UI * *	5 0 0 0	5 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0	
986 987 988 989 990	KK KM DT DI DQ *	RET06B RETAIN 06BRET 0 0	DIVERT 100 YR 2 7.32 10000 10000	2 HR RUNC 0.0	FF VOLUN	ИE						
991 992 993	KK KM HC *	CP6B COMBIN 2	IE HYDROG	GRAPHS 81	'6B AND F	RETO6B.						
994 995	KK	6BT7C ROUTE F	ROUTE	IG ROADWA	YS FROM	CP 6B TO	CP 7C					
996 997	RS	0.030	FLOW 0.015	-1 0.030	1001	.0060						
998 999	RX RY	0 1.0	17.5 0.5	18.0 0.0	57.0 0.8	73.0 0.8	112 0	112.5 0.5	130 1.0			
	*				HEC-1	INPUT						PAGE 22
LINE	ID.	1	2	3	4	5	6.		8	9	10	
1000 1001 1002 1003 1004	KK KM KM KM	09 BASIN THE FC L=0.69 PHOENI	BASIN 09 DLLOWING Lca=0. X VALLEY	PARAMETE 25 S=24 S-GRAPH	RS WERE .6 Kn=(WAS USE	PROVIDED).046 LA ED FOR TH	FOR TH G=18.5 IS BASI	IS BASIN N				

KM PHOENIX VALLEY S-GRAPH WAS USED FOR THIS BASIN

	1005 1006 1007 1008 1009 1010 1011	BA LG UI UI UI UI *	0.094 0.26 0 5 0 0 0	0.25 23 5 0 0 0	5.46 79 0 0 0	0.32 122 0 0 0 0	23 196 0 0 0	138 0 0 0 0	89 0 0 0	40 0 0 0	22 0 0 0 0	8 0 0 0	
	1012 1013 1014 1015 1016 1017	KK KM DT DI DQ *	RETO9 RETAIN 100 YR 09RET 0 0	DIVERT 100 YR 2 24 HR RU 7.91 10000 10000	2 HR RUNO JNOFF FOR 0.0	FF VOLUN GREAT I	ME FOR SCI PARK.	HOOLS & M	ULTI-FAMI	LLY. 100) YR 24	HR RUN	
	1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029	KK KM KM BA LG UI UI UI UI UI X *	07C BASIN THE FC L=0.44 PHOENI 0.113 0.25 0 0 0 0 0	BASIN 07C DLLOWING Lca=0. X VALLEY 0.17 101 0 0 0 0	PARAMETE 17 S=51 C S-GRAPH 6.76 318 0 0 0 0	RS WERE .1 Kn=(WAS USH 0.17 304 0 0 0 0	PROVIDED 0.040 LAG ED FOR TH: 33 111 0 0 0 0 0	FOR THIS 3=10.2 IS BASIN 28 0 0 0 0	BASIN 11 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	
	1030 1031 1032 1033 1034	KK KM DT DI DQ *	RET07C RETAIN 07CRET 0 0	DIVERT A PORTIC 15.70 10000 10000	ON OF THE 0.0	100 YR	24 HR RUI	NOFF VOLU	ME				
1	1035 1036 1037	KK KM HC *	CP7C COMBIN 3	IE HYDROG	RAPHS 6B	T7C, RE HEC-1	INPUT	RET07C.					PAGE 23
	LINE	ID.	1	2	3	4.	5	б	7	8	9	10	
	1038 1039 1040 1041 1042 1043	KK KM DT DI DQ *	DIV7C PORTION THROUGH DTV7C 0 0	DIVERT N OF RUNG N AN EXIS 0.0 1.0 0.7	DFF IS DI 33.1 5.8 4.0	VERTED T INCH BLI 9.0 6.2	FO POINT ? EED PIPE 16.7 11.2	TWENTY-TW 21.5 14.9	0 BLEED 5 22.8 15.8	SYSTEM	0 0	0 0	
	1044 1045 1046 1047 1048 1049	KK KM RS RC RX RY *	7CT7B ROUTE F 1 0.035 0 6.0	ROUTE PLOW THRO FLOW 0.035 1.0 5.0	DUGH BASI -1 0.035 20.0 1.0	NS FROM 618 24.0 0.0	BASIN C .0030 198.0 0.0	202 1.0	B 222 5.0	235 6.0			
	1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061	KK KM KM BA LG UI UI UI UI VI *	07B BASIN THE FC L=0.73 PHOENI 0.151 0.24 0 0 0 0 0	BASIN 07B ULLOWING Lca=0. X VALLEY 0.15 41 0 0 0 0	PARAMETE 28 S=31 7.58 139 0 0 0 0	RS WERE .5 Kn=(WAS USH 0.12 220 0 0 0 0 0	PROVIDED 0.043 LAG ED FOR TH: 35 326 0 0 0 0 0	FOR THIS 3=17.6 IS BASIN 212 0 0 0 0	BASIN 128 0 0 0 0	53 0 0 0 0	27 0 0 0 0	9 0 0 0 0	
	1062 1063 1064 1065 1066	KK KM DT DI DQ *	RET07B RETAIN 07BRET 0 0	DIVERT A PORTIC 19.43 10000 10000	ON OF THE 0.0	100 YR	24 HR RUI	NOFF VOLU	ME				
	1067 1068 1069	KK KM HC *	CP7B COMBIN 2	IE HYDROG	RAPHS 7C	T7B AND	RET07B.						
1	1070 1071 1072 1073 1074 1075 1076	KK KM KM BA LG	05B BASIN THE FC L=0.65 PHOENI 0.156 0.25	BASIN 05B 0LLOWING 6 Lca=0. 2X VALLEY 0.15	PARAMETE 12 S=21 S-GRAPH 8.85	RS WERE .5 Kn=(WAS USH 0.07 HEC-1	PROVIDED D.045 LA(ED FOR TH: 29 INPUT	FOR THIS 3=13.7 IS BASIN	BASIN				PAGE 24

LINE	ID.	1.	2		4	5	6.	7	8	9	10	
1077 1078 1079 1080 1081	UI UI UI UI VI *	0 0 0 0	75 0 0 0 0	226 0 0 0 0	408 0 0 0 0	284 0 0 0 0	135 0 0 0 0	51 0 0 0	15 0 0 0 0	12 0 0 0	0 0 0 0	
1082 1083 1084 1085 1086	KK M DT DI DQ *	RET05B RETAIN 05BRET 0 0	DIVERT THE 100 11.53 10000 10000	YR 2 HR 0.0	RUNOFF V	OLUME						
1087 1088 1089 1090 1091 1092	KK KM RS RC RX RY *	5BT7A ROUTE 2 0.030 0 1.0	ROUTE FLOW ALON FLOW 0.015 17.5 0.5	NG ROADWA -1 0.030 18.0 0.0	2155 57.0 0.8	5B TO 7A .0040 73.0 0.8	112 0.0	112.5 0.5	130 1.0			
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102	KK KM KM BA LG UI UI UI	07A BASIN THE F L=0.8 PHOEN 0.131 0.25 0 7 0	BASIN 07A OLLOWING 4 LCa=0. IX VALLEY 0.13 32 0 0	PARAMETE 17 S=10 S-GRAPE 10.22 111 0 0	ERS WERE 1.7 Kn=0 1 WAS USE 0.05 172 0 0	PROVIDED .042 LAG D FOR THI 35 274 0 0	FOR TH: =18.4 S BASII 192 0 0	IS BASIN N 123 0 0	54 0 0	30 0 0	11 0 0	
1103 1104	UI UI *	0 0	0	0	0	0 0	0 0	0	0 0	0	0	
1105 1106 1107 1108 1109	KK KM DT DI DQ *	RET07A RETAIN 07ARET 0 0	DIVERT THE 100 16.94 10000 10000	YR 24 HR 0.0	RUNOFF	VOLUME						
1110 1111 1112	KK KM HC *	CP7A COMBII 4	NE HYDROG	BRAPHS 31	7A, CP7B	, 5BT7A,	AND RE	r07A.				PAGE 25
LINE	ID.	1.	2		4		6.	7	8	9	10	11101 15
1113 1114 1115 1116 1117 1118 1119 1120	KK KM KM RS RC RX RY *	7AT12 ROUTE : SLOPE DURING 1 0.030 0 1.0	ROUTE FLOW ALON OF ROUTIN THIS INT FLOW 0.015 17.5 0.5	IG ROADWA IG (WARNE CERIM CON -1 0.030 18.0 0.0	AYS FROM R ROAD) IDITION. 1540 57.0 0.8	7A TO 12 UNKNOWN .0080 73.0 0.8	112 0.0	112.5 0.5	130 1.0			
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132	KK KM KM BA LG UI UI UI UI UI UI	12A BASIN THE F L=0.6 PHOEN 0.117 0.24 0 0 0 0 0 0	BASIN 12A OLLOWING 1 Lca=0. IX VALLEY 0.15 65 0 0 0 0	PARAMETE 22 S=21 5-GRAPH 9.46 192 0 0 0 0 0	ERS WERE .3 Kn=0 WAS USE 0.06 329 0 0 0 0 0 0 0	PROVIDED .034 LAC D FOR THI 48 198 0 0 0 0 0	FOR TH: =12.8 S BASIN 78 0 0 0 0 0	IS BASIN 7 28 0 0 0 0 0 0	9 0 0 0 0	0 0 0 0 0	0 0 0 0 0	
1133 1134 1135 1136 1137	* KK DT DI DQ *	RET12A RETAIN 12ARET 0 0	DIVERT THE 100 10.90 10000 10000	YR 2 HR 0.0	RUNOFF V	OLUME						
1138 1139 1140	KK KM HC *	CP12 COMBII 2	NE HYDROG	RAPHS 74	T12 AND	RET12A						
1141 1142 1143 1144 1145 1146	KK KM RS RC RX RY	12T12C ROUTE 2 0.030 0 2.0	ROUTE FLOW ALON FLOW 0.015 17.5 1.0	IG ELLSWC -1 0.030 18 0.5	0RTH ROAD 2600 57 0.0	FROM CPI .0014 73 0	.2 TO CI 112 0.5	P12C 112.5 1.0	130 2.0			

1		*				HEC-1	INPUT						PAGE 26
	LINE	ID.	1.	2.	3	4	5	6	7	8	9	10	
	1147 1148 1149 1150 1151	KK KM KM KM BA	12B BASIN THE F L=0.5 PHOEN 0.087	BASIN 12B OLLOWING 7 Lca=0 IX VALLE	PARAMETE .25 S=12 Y S-GRAPH	IRS WERE 1 .3 Kn=0 I WAS USE1	PROVIDED .035 LAG D FOR TH:	FOR THI G=14.9 IS BASIN	S BASIN				
	1153	LG	0.25	0.25	5.24	0.30	45	9.8	37	15	6	0	
	1155	UI	0	0	0	0	0	0	0	0	0	0	
	1156 1157 1158	UI UI *	0	0	0	0	0	0	0	0	0 0	0	
	1159	* KK	RET12B	DIVERT									
	1160 1161 1162 1163	KM DT DI DQ *	RETAIN 12BRET 0 0	THE 100 7.61 10000 10000	YR 2 HR 0.0	RUNOFF V	JLUME						
	1164	KK	2BT12C ROUTE	ROUTE	NG ELLSWO	RTH ROAD	FROM RE	T12B TO	CP12C				
	1166	RS	4	FLOW	-1	1416	0014	1122 10	01120				
	1167 1168	RC RX	0.030	0.015	0.030	1416 57	.0014 73	112	112.5	130			
	1169	RY * *	2.0	1.0	0.5	0.0	0	0.5	1.0	2.0			
	1170 1171	KK KM	12C BASIN	BASIN 12C									
	1172	KM	THE F	OLLOWING	PARAMETE	RS WERE	PROVIDED	FOR THI	S BASIN				
	1174	KM	PHOEN	IX VALLE.	Y S-GRAPH	WAS USE	FOR TH	IS BASIN	I				
	1175 1176	BA LG	0.075	0.25	5.05	0.34	52						
	1177	UI	0	23	75	125	162	101	54	23	10	5	
	1179	UI	5	0	0	0	0	0	0	0	0	0	
	1180 1181	UI UI *	0	0 0	0	0	0 0	0 0	0	0	0 0	0 0	
1	1182 1183 1184 1185 1186	KK DT DI DQ *	RET12C RETAIN 12CRET 0 0	DIVERT THE 100 7.12 10000 10000	YR 2 HR 0.0	RUNOFF V	DLUME						PAGE 27
	LINE	ID.	1 .	2.	3	4	5	б	7	8	9	10	
	1107		10	DAGIN									
	1187	KK	BASIN	13									
	1189	KM	THE F	OLLOWING	PARAMETE 26 S=17	RS WERE 1	PROVIDED	FOR THI	S BASIN				
	1191	KM	PHOEN	IX VALLE	Y S-GRAPH	WAS USE	FOR THE	IS BASIN	I				
	1192	LG	0.121	0.25	5.05	0.34	34						
	1194	UI	0	19	78	117	181	206	139	95	45	27	
	1195	UI	14	0	0	0	0	0	0	0	0	0	
	1197 1198	UI UI *	0 0	0 0	0	0	0 0	0 0	0	0	0 0	0 0	
	1199	кк *	RET13	DIVERT									
	1200	KM	RETAIN	THE 100	YR 2 HR	RUNOFF V	DLUME						
	1201 1202	DT DI	13RET 0	13.96	0.0								
	1203	DQ *	0	10000									
	1204	KK	DIV7CR	ETRIEVE									
	1205 1206	KM DR *	24-INC DTV7C	H DRAIN 1	PIPE LEAV	'ING RETEI	NTION BAS	SIN 7C					
	1207	*	7CT13										
	1208 1209	KM	ROUTE	FLOW FROM	M BASIN 7 HIS ROUTT	NG WOTT	NOT COM	VERGE ON	A VALUE	AS			
	1210	KM	IT OSCI	LLATED B	ETWEEN 3	AND 20.T	HE ASSUM	PTION WA	S MADE TI	HAT			
	1211 1212	KM RS	THE ROU	TING WOU: FLOW	LD BE 2 F _1	EET PER S	SECOND FO	OR AN NS	STEP 5.				
	1213	RC	0.030	0.015	0.030	3109	.0050		110 -	100			
	1214 1215	RX RY	1.0	17.5 0.50	18	0.8	0.8	0.0	112.5 0.5	1.0			
		*											

1216 1217 1218	KK KM HC *	CP13 COMBI 2	NE HYDRO	GRAPHS D	TV7C ANI	O RET13.						
1219 1220 1221 1222 1223 1224 1225	KK KM KM KM BA LG	11B BASIN THE F L=1.2 PHOEN 0.219 0.27	BASIN 111B OLLOWING 2 Lca=0 1X VALLE 0.25	PARAMET .36 S=2 Y S-GRAP 4.58	ERS WERI 3.0 Kn: H WAS US 0.46	E PROVIDE =0.043 I SED FOR T 44	ED FOR TH LAG=25.0 THIS BASI	IIS BASIN				
		1		2	HEC-	L INPUT	<i>c</i>	-	0	0	1.0	PAGE 28
LINE	1D.		2.		4						10	
1227 1228 1229 1230	UI UI UI UI *	50 0 0	30 0 0	99 13 0 0	101 9 0 0	9 0 0 0	0 0 0 0	280 0 0 0	0 0 0 0		0 0 0 0	
1231 1232 1233 1234 1235	KK DT DI DQ *	RET11B RETAIN 11BRET 0 0	DIVERT THE 100 21.17 10000 10000	YR 2 HR 0.0	RUNOFF	VOLUME						
1236 1237 1238 1239 1240 1241	KK KM RS RC RX RY	11BT13 ROUTE 4 0.030 0 1.0	FLOW FRO FLOW 0.015 17.5 0.50	M BASIN -1 0.030 18 0.0	7C TO CI 1262 57 0.8	2 13. .0050 73 0.8	112	112.5 0.5	130 1.0			
	*											
1242 1243 1244	KK KM HC *	CP12C COMBI 5	NE HYDRO	GRAPHS 1	2T12C, 2	2BT12C, F	RET12C, C	Pl3, AND	11BT13.			
1245	кк	13T75	ROUTE									
1246	RS	ROUTE	FLOW ALO.	NG ELLSW -1	LORIH ROM	AD FROM C	PI2C 10	CP/5.				
1248 1249 1250	RX	0.030	17.5	18	57	.0016	112	112.5	130			
1250	* *	2.0	1.0	0.5	0.0	U	0.5	1.0	2.0			
1251 1252 1253 1254 1255	KK KM KM KM	14 BASIN THE F L=0.4 PHOEN	BASIN 14 OLLOWING 6 Lca=0 IX VALLE	PARAMET .20 S=1 Y S-GRAP	ERS WERI 7.4 Kn: H WAS US	E PROVIDE =0.031 I SED FOR 7	ED FOR TH LAG=10.5 THIS BASI	IS BASIN				
1250	LG	0.22	0.25	4.96	0.37	69 126	35	12	0	0	0	
1250	UI	0	0	0	0	0	0	0	0	0	0 0	
1261 1262	UI UI	0	0	0	0	0	0	0	0	0	0	
	*											D3.07 00
LINE	TD	1	2	3	HEC	L INPUT	6	7	8	9	10	PAGE 29
21112	10.											
1263 1264 1265 1266 1267	KK DT DI DQ *	RET14 RETAIN 14RET 0 0	DIVERT THE 100 12.25 10000 10000	YR 2 HR 0.0	RUNOFF	VOLUME						
1268 1269 1270 1271 1272 1273	KK KM KM KM BA	11A BASIN THE F L=1.2 PHOEN 0.078	BASIN 111A OLLOWING 21 Lca=0 11X VALLE	PARAMET .48 S=1 Y S-GRAP	ERS WERI 9.8 Kn: H WAS US	E PROVIDE =0.043 I SED FOR 1	ED FOR TH LAG=28.6 THIS BASI	IIS BASIN N				
1274 1275	LG UI	0.24	0.25	4.03	0.67	54 59	80	112	83	64	48	
1276	UI	31	16	12	8	3	3	3	3	0	0	
1279	UI VI *	0	0	0	0	0	0	0	0	0	0	
1280 1281 1282 1283 1284	KK DT DI DQ *	RETIIA RETAIN 11ARET 0 0	DIVERT THE 100 8.03 10000 10000	YR 2 HR 0.0	RUNOFF	VOLUME						

1285 Ki 1286 Ki 1287 R; 1288 R(1289 R;	K 11AT75 M ROUTE S 5 C 0.030 K 0	FLOW FRC FLOW 0.015 17.5	M BASIN -1 0.030 18	11A TO C 1855 57	P 75. .0051 73	112	112.5	130			
1270 R. * *	1.0	0.50	0.0	0.8	0.8	0.0	0.5	1.0			
1291 KI 1292 KI 1293 KI 1294 KI 1294 KI 1295 KI 1296 BJ	(10 M BASIN M THE F M L=1.1 M PHOEN A 0.171	BASIN 10 OLLOWING 1 Lca=0 IX VALLE	PARAMET .56 S=1 Y S-GRAP	ERS WERE 8.9 Kn= H WAS US	PROVIDE 0.041 L ED FOR T	D FOR TH AG=28.2 HIS BASII	IS BASIN N				
1297 Lo 1298 U	3 0.24 L 0	0.19 20	6.54 57	0.17 102	44 132	186	244	181	138	104	
1299 U 1300 U	I 61 I 0	35 0	25 0	15	6 0	6 0	6 0	0	0	0	
1301 UI 1302 UI *	E 0 E 0	0	0	0	0	0	0	0	0	0	
1				HEC-1	INPUT						PAGE 30
LINE II	01.	2.	3.	4.	5.	6.	7.	8	9	10	
1303 KI 1304 KI 1305 DC 1306 DC 1307 DC *	K RET10 M RETAIN I 10RET I 0 2 0	DIVERT THE 100 15.09 10000 10000	YR 2 HR 0.0	RUNOFF	VOLUME						
1308 KH 1309 KH	K 10T75 M ROUTE	FLOW FRC	M BASIN	10 TO CP	75.						
1310 RS 1311 RC	5 7 C 0.030	FLOW 0.015	-1 0.030	6300	.0060						
1312 R2 1313 R2 *	K 0 K 1.0	17.5 0.50	18 0.0	57 0.8	73 0.8	112 0.0	112.5 0.5	130 1.0			
1314 KI 1315 Ki	CP75 COMBI	NE HYDRC	GRAPHS 1	3T75, RE	T14, 11A	T75, 10T	75, AND	10875.			
1316 HG * * * * *	2 5 ********	*****	*****	*****	*****	* * * * * * * *	*****	******	*****	****	
1317 Ki 1318 Ki 1319 Ki 1320 Ki 1321 Ki 1322 Bi	C 77A M BASIN 7 M THE FOL M L= M PHOENIX A 1.74	7A LOWING P 2.9 Lc VALLEY	ARAMETER a= S-GRAPH	S WERE P 1.5 S= WAS USED	ROVIDED 31.1 FOR THI	FOR THIS Kn= .09 S BASIN	BASIN 2 LAG=	119.0			
1323 Lú 1324 UI	3.35 1.49.	.36 49.	5.00 49.	.27	.00 49.	108.	162.	185.	205.	230.	
1325 U. 1326 U. 1327 U.	L 244. L 537. L 362.	584. 334.	278. 659. 311.	293. 601. 293.	541. 273.	496. 252.	461. 238.	430.	408. 407. 189.	385. 161.	
1328 U 1329 U	141. 141. 149.	104. 49.	87. 49.	87.	83. 15.	81. 15.	81. 15.	73. 15.	49. 15.	49. 15.	
1330 U 1331 U	I 15. I 15.	15. 0.	15. 0.	15. 0.	15. 0.	15. 0.	15. 0.	15. 0.	15. 0.	15. 0.	
1332 U: * *	r 0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	
1333 Ki 1334 Ki 1335 Ki 1336 Pi	K 77ATB M ROUTE B M TO MOUN	ROUTE ASIN 77A TAIN ROA FLOW	. THROUGH .D.	THE KEI	GHLEY PL	ACE SUBD	IVISION	FROM MERI	DIAN ROA	AD TO	
1337 R(1338 R) 1339 R) *	0.045 0.00 2 5.50	0.040 5.00 5.00	0.045 10.00 4.50	3000 37.00 0.00	0.0050 47.00 0.00	$0.00 \\ 74.00 \\ 4.50$	79.00 5.00	84.00 5.50			
*				HEC-1	INPUT						PAGE 31
LINE II	D1.	2.	3.	4.	5.	6.	7.	8	9	10	
1340 Ki 1341 Ki 1342 Ki 1343 Ki 1344 Ki 1344 Ki	C 77B M BASIN 7 M THE FOL M L=0.56 M PHOENIX A 0.349	BASIN 7B LOWING P Lca=0.2 VALLEY	ARAMETER 6 S=28. S-GRAPH	S WERE P 6 Kn=0. WAS USED	ROVIDED 047 LAG FOR THI	FOR THIS =17.2 S BASIN	BASIN				
1346 L(1347 U) 1348 U) *	G 0.19 I 100 I 0	0.25 337 0	5.40 536 0	0.30 757 0	18 486 0	273 0	113 0	54 0	20 0	21 0	
1349 Ki 1350 Ki 1351 D: 1352 D: 1353 D: *	<pre>K RET77B M RETAIN F 77BRET L 0 2 0</pre>	DIVERT 80% OF T 16.44 10000 10000	HE 100 Y 0.0	R 2 HR R	UNOFF VO	LUME					

1354 1355 1356	КК КМ НС *	CP77B COMBINE 2	COMBINE HYDROGR	APHS 77A	TB AND '	77в.						
1357 1358 1359 1360 1361	KK KM KM RS RC	77BTC ROUTE F ROAD TO 3 0.045	ROUTE LOW THRO SIGNAL FLOW 0.040	UGH THE BUTTE RC -1 0.045	MOUNTAIN AD. 4750	N HORIZON	IS (SOUTH	H) DEVEL	OPEMENT FI	ROM MOUNT	FAIN	
1362 1363	RX RY *	0.00 5.00	5.00 4.00	10.00 3.00	20.00 0.00	85.00 0.00	105.00 3.00	110.00 4.00	115.00 5.00			
	* *	******	******	******	******	******	******	******	******	*******	****	
1364 1365	KK KM	77C BASIN 7	BASIN 7C									
1366 1367	KM KM	THE FOL	LOWING P	ARAMETER 1 S=23.	S WERE I 7 Kn=0	PROVIDED	FOR THIS	S BASIN				
1368	KM	PHOENIX	VALLEY	S-GRAPH	WAS USEI	FOR THI	S BASIN					
1370	LG	0.279	0.25	6.00	0.22	31						
1371 1372	UI UI	0 62	38 38	129 14	208 12	281 12	442 0	362 0	265 0	189 0	100	
1373	UI	0	0	0	0	0	0	0	0	0	0	
1375	UI *	Ő	Ő	0	0	Ő	0	Ő	õ	Ö	Ö	
	*				HEC-	l input						PAGE 32
LINE	ID.	1.	2.	3.		5 .	6	7	8.	9	10	
1376	KK	RET77C	DIVERT	ນະ 100 V	י מנו כ מי	NINCEE VC	TIME					
1378	DT	77CRET	18.8	0.0		CONOFF VC	LONE					
1379	DI DQ	0	10000									
	*											
1381 1382	KK KM	C77C COMBINE	COMBINE HYDROGR	APHS 77E	TC AND	77C						
1383	HC *	2										
	* *	******	******	******	******	*******	******	*******	******	* * * * * * * * *	* * * *	
1384 1385	KK KM	77CT78 ROUTE F	ROUTE LOW SOUT	H ALONG	THE WEST	r side of	SIGNAL	BUTTE R	DAD IN AN	ENGINEEF	RED	
1386 1387	KM RS	CHANNEL 4	FROM RA	Y ROAD I	O WILLIA	AMS FIELD	ROAD.					
1388	RC	0.032	0.032	0.032	4435	0.0020	0.00	142.00	149 00			
1389	RX RY	4.50	4.00	3.50	24.00	0.00	3.50	4.00	4.50			
	*											
1391 1392	KK KM	78A BASIN 7	8A									
1393 1394	KM KM	THE FOL	LOWING P	ARAMETER	S WERE I	PROVIDED	FOR THIS	S BASIN 90 LAG=	118.0			
1395	KM	PHOENIX	VALLEY	S-GRAPH	WAS USEI	FOR THI	S BASIN					
1396	LG	.35	.36	5.00	.27	.00						
1398 1399	UI UI	54. 268.	54. 290.	54. 305.	54. 322.	54. 342.	124. 366.	176. 396.	203. 417.	227. 451.	252. 515.	
1400 1401	UI	612. 385.	641. 356.	716. 334.	643. 315.	579. 290.	531. 270.	494. 255.	464. 233.	437. 206.	417. 159.	
1402	UI	153.	95.	95.	95.	88.	88.	88.	65.	54.	54.	
1403 1404	UI UI	54. 16.	54. 16.	45. 16.	16. 16.	16. 16.	16. 16.	16. 16.	16. 16.	16. 16.	16. 16.	
1405	UI	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	
1100	*	0.	0.	0.	0.		0.	0.	0.	0.	0.	
1407	KK	78ATB	ROUTE	703 70	700 ****	WACH CES	COINC -		IF.			
1408	KM RS	ROUTE F	LOW FROM FLOW	/8A TO -1	/8B VIA	wash CRC	SSING CO	JUNIY LI	NE			
1410 1411	RC RX	0.045	0.040	0.045 980.00	3500 1003.00	0.0042	0.00	1511.00	2011.00			
1412	RY *	4.50	3.50	3.00	0.00	0.00	3.00	3.50	4.50			
	*				HEC-	l INPUT						PAGE 33
LINE	ID.	1.	2.	3.	4	5.	6	7	8.	9	10	
1413	KK	78B	BASIN									
1414 1415	KM KM	BASIN 7 THE FOL	8B LOWING P	ARAMETER	S WERE I	PROVIDED	FOR THIS	S BASIN				
1416 1417	KM KM	L=0.60 PHOENTY	Lca=0.4	0 S=31. S-GRAPH	7 Kn=0	.050 LAG	=21.7					
1418	BA	0.396		_ 0.0411								
1419 1420	LG UI	U.30 61	0.17 254	6.80 371	0.15 576	15 682	457	315	156	90	48	
1421	UI *	20	19	0	0	0	0	0	0	0	0	
	* 0	UPPENTLY	THEFT T	S NO FYT	STING PI	CENTRON	UD DT ANT	NED RETEN	TON FOR	BASTN 78	0	

 \star currently there is no existing retention or planned retention for basin 78b \star due to the current land use of large lot residential.
1422 1423 1424	KK C78B COMBINE KM COMBINE HYDROGRAPHS 78ATB AND 78B HC 2 * *	
1425 1426 1427 1428 1429 1430 1431	KK 78BTC ROUTE KM ROUTE 78B TO 78C VIA WASH CROSSING MOUNTAIN ROAD, THEN SOUTH ALONG KM WESTERN EDGE 0F 78C. RS 3 FLOW RC 0.035 0.022 0.035 RX 0.00 100.00 115.00 120.00 130.00 RX 0.00 100.00 115.00 125.00 130.00 135.00 RY 5.00 4.00 3.50 0.00 3.50 8.00 9.00	
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443	KK 78C BASIN KM BASIN 78C KM THE FOLLOWING PARAMETERS WERE PROVIDED FOR THIS BASIN KM LO.50 LCGA=0.30 S=31.8 Kn=0.044 LAG=16.0 KM PHOENIX VALLEY S-GRAPH WAS USED FOR THIS BASIN BA 0.288 LG 0.26 0.16 7.58 0.11 24 UI 0 99 313 547 610 364 167 77 25 19 UI 0 0 0 0 0 0 0 0 0 0 0 0 UI 0 0 0 0 0 0 0 0 0 0 0 UI 0 0 0 0 0 0 0 0 0 0 0 UI 0 0 0 0 0 0 0 0 0 0 0 UI 0 0 0 0 0 0 0 0 0 0 0 UI 0 0 0 0 0 0 0 0 0 0 0 VI 0 0 0 0 0 0 0 0 0 0 0 VI 0 0 0 0 0 0 0 0 0 0 0 VI 0 0 0 0 0 0 0 0 0 0 0 VI 0 0 0 0 0 0 0 0 0 0 0 VI 0 0 0 0 0 0 0 0 0 0 0 *	
1444 1445 1446 1447 1448	KK RET78C DIVERT KM RETAIN 80% OF THE 100 YR 2 HR RUNOFF VOLUME DT 78CRET 1.6 0.0 DI 0 10000 DQ 0 10000 *	
	* HEC-1 INPUT PA	AGE 34
LINE	ID12345678910	
1449 1450 1451	KK C78C COMBINE KM COMBINE HYDROGRAPHS 78BTC AND 78C. HC 2 *	
1452 1453 1454	KK C78C2 COMBINE KM COMBINE HYDROGRAPHS 77CT78 AND C78C. * KO 2 HC 2 *	
1455 1456 1457 1458 1459 1460 1461	KK 78CT79 ROUTE KM ROUTE 78C TO 79A FROM SIGNAL BUTTE ROAD TO THE PROPERTY BOUNDARY APPROXIMATEL KM 1/4 MILE TO THE WEST OF SIGNAL BUTTE ROAD VIA ENGINEERED CHANNEL. RS 2 FLOW -1 RC 0.032 0.032 4215 0.0033 0.00 RX 0.00 5.00 10.00 26.00 81.00 97.00 102.00 107.00 RY 5.00 4.50 4.00 0.00 4.00 4.50 5.00	
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473	KK 20 BASIN KM BASIN 20 KM THE FOLLOWING PARAMETERS WERE PROVIDED FOR THIS BASIN KM L1.23 L1.23 Lca=0.41 S=14.6 Kn=0.044 LAG=29.4 KM PHOENIX VALLEY S-GRAPH WAS USED FOR THIS BASIN BA 0.270 LG 0.24 UI 0 31 81 150 193 258 377 296 228 UI 0 121 62 47 31 13 9 9 0 0 0 0 0 0 0 0 0 0 01 0 0 0 0 0 01 0 0 0 0 0 0 01 0 0 0 0 0 0 01 0 0 0 0 0 0 01 0 0	
1474 1475 1476 1477 1478	* KK RET20 DIVERT KM RETAIN 100 YR 2 HR RUNOFF VOLUME DT 20RET 25.76 0.0 DI 0 10000 DQ 0 10000 * *	
1479 1480 1481	KK CP22B COMEINE KM COMBINE HYDROGRAPHS 78CT79 AND RET20 * KO 2 HC 2 *	
	* HEC-1 INPUT PA	AGE 35
LINE	ID1	
1482 1483 1484	KK 16 BASIN KM BASIN 16 KM THE FOLLOWING PARAMETERS WERE PROVIDED FOR THIS BASIN	

 1485
 KM
 L=0.61
 Lca=0.24
 S=24.6
 Kn=0.045
 LAG=17.0

 1486
 KM
 PHOENIX VALLEY S-GRAPH WAS USED FOR THIS BASIN

	1487 1488 1489 1490 1491 1492 1493	BA LG UI UI UI UI *	0.099 0.25 0 6 0 0 0	0.17 29 0 0 0 0	6.76 97 0 0 0	0.16 159 0 0 0 0	31 215 0 0 0	135 0 0 0	75 0 0 0	31 0 0 0 0	14 0 0 0 0	6 0 0 0	
	1494 1495 1496 1497 1498	KK KM DT DI DQ *	RET16 RETAIN 16RET 0 0	DIVERT 100 YR 2 7.60 10000 10000	2 HR RUNG 0.0	OFF VOLUMI	E						
	1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510	KK KM KM BA LG UI UI UI UI UI UI	18 BASIN THE F L=1.0 PHOEN 0.320 0.25 0 114 0 0 0	BASIN 18 DLLOWING 7 Lca=0 IX VALLE 0.25 38 65 0 0 0	PARAMETI .39 S=1. Y S-GRAPI 6.00 106 46 0 0 0	ERS WERE 1 4.0 Kn=0 H WAS USEN 0.23 192 28 0 0 0 0	PROVIDED .045 LA D FOR TH 27 248 12 0 0 0 0	FOR THIS G=28.2 IS BASIN 348 12 0 0 0 0	5 BASIN 457 12 0 0 0	339 0 0 0 0	259 0 0 0 0	194 0 0 0 0	
	1511 1512 1513 1514 1515	* KK DT DI DQ *	RET18 RETAIN 18RET 0 0	DIVERT 100 YR 2 24.70 10000 10000	2 HR RUNG 0.0	OFF VOLUM	E						
	1516 1517 1518 1519 1520 1521	KK KM RS RC RX RY *	18T19 ROUTE F 1 0.030 0.8	ROUTE LOW FROM FLOW 0.015 7.5 0.5	BASIN 1: -1 0.030 8 0	B TO BASIN 1040 38 0.6	N 19 .0040 43 0.6	73 0	73.5 0.5	81 0.8			DACE 26
Ţ	LINE	ID	1.	2.	3 .	4	5	6	7	8	9	10	PAGE 30
	1522 1523 1524	KK KM + KC HC *	CP19A COMBINE 2 2	COMBINE HYDROGRA	APHS RET	16 AND 18'	r19						
	1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536	KK KM KM BA LG UI UI UI UI UI UI *	19 BASIN THE F L=0.6 PHOEN 0.138 0.24 0 8 0 0 0 0	BASIN 19 DLLOWING 2 Lca=0 IX VALLE 0.15 37 0 0 0 0 0 0	PARAMETI 24 S=11 Y S-GRAPI 8.36 125 0 0 0 0 0	ERS WERE 1 6.1 Kn=0 H WAS USEI 0.08 198 0 0 0 0 0	PROVIDED .043 LA D FOR TH 39 297 0 0 0 0 0 0	FOR THIS G=17.7 IS BASIN 195 0 0 0 0	5 BASIN 119 0 0 0 0	49 0 0 0 0	26 0 0 0 0	8 0 0 0 0	
	1537 1538 1539 1540 1541	KK KM DT DI DQ *	RET19 RETAIN 2 19RET 0 0	DIVERT 100 YR 2 11.3 10000 10000	2 HR RUNG 0.0	OFF VOLUM	Ξ						
	1542 1543 1544	KK KM HC *	CP19B COMBINE 2	COMBINE HYDROGRA	APHS CP1	9a and re:	F19.						
	1545 1546 1547 1548 1550 1551 1552 1553 1554 1555 1556	KK KM KM BA LG UI UI UI UI UI UI	17 BASIN THE F L=0.9 PHOEN 0.141 0.25 0 32 0 0 0 0 0	BASIN 17 DLLOWING 2 Lca=0 IX VALLE 0.25 19 19 0 0 0 0	PARAMETI .47 S=1 Y S-GRAPI 4.08 64 8 0 0 0 0	ERS WERE 1 9.6 Kn=0 H WAS USE1 0.55 104 6 0 0 0	PROVIDED .042 LA D FOR TH 33 139 6 0 0 0	FOR THIS G=25.0 IS BASIN 220 0 0 0 0	5 BASIN 184 0 0 0	135 0 0 0 0	97 0 0 0 0	53 0 0 0	
1		*				HEC-1	INPUT						PAGE 37

PAGE 37

20

1557 RET17

(*	**) RUNOFF ALSO COMPUTED AT THIS LOCA	ATION
1**	* * * * * * * * * * * * * * * * * * * *	* * *
*	· · · · · · · · · · · · · · · · · · ·	*
*		
*	FLOOD HYDROGRAPH PACKAGE (HEC-1)	*
*		
*	JUN 1998	*
*	VERSION 4.1	*
*		
*		*
*	DIN DIME 0000010 TIME 15,10,14	
*	RUN DATE 06DEC19 TIME 15:18:14	*
*		*
*		
**	**********	* * *

- U.S. ARMY CORPS OF ENGINEERS
- HYDROLOGIC ENGINEERING CENTER
 - 609 SECOND STREET
- DAVIS, CALIFORNIA 95616
 - (916) 756-1104

FILE: DU2INT.DAT

MODEL REVISED: 12-6-2019

PROJECT: MASTER DRAINAGE REPORT FOR DU 2 AT EASTMARK

THIS MODEL IS AN EXERPT OF THE FULL BUILD OUT MODEL. NO REFERENCE TO OTHER MODELS IS REQUIRED TO RUN THIS MODEL.

MODEL REVISION DESCRIPTION

THIS MODEL IS AN EXERPT OF THE MODEL PROVIDED BY THE FLOOD CONTROL DISTRICT OF MARICOPA COUNTY (WS4-SEM.DAT). LAND USES FOR DU 2, HAVE BEEN UPDATED TO REFLECT DETAILED PLANNING. THE UNDEVELOPED PORTION OF DU DN AND GN HAS BEEN REVISED TO REMAIN AS EXISTING LAND USE.LAND USE FOR DU 1 HAS BEEN REVISED TO REMAIN AS EXISTING LAND USE FOR THIS INTERIM CONDITION. THIS IS AN INTERIM CONDITION MODEL WHICH INCLUDES ONSITE MODELING FOR THOSE DEVELOPMENT UNITS THAT HAVE BEEN CONSTRUCTED, PERMITED, OR WHICH HAVE BEEN MASTER PLANNED. THIS INCLUDES:DU 3/4, 3S, 7N, 8/9 AND PORTIONS OF 5N AND 6N. THE REMAINING SUBBASINS ARE MODELED AS EXISTING LOW DENSITY PROVING GROUNDS.

MODEL REVISED BY: WOOD, PATEL & ASSOCIATES, INC. STEVE MCKEE, P.E.

FILE PATH:

Z:\EASTMARK\2019\195036\PROJECT_SUPPORT\REPORTS\DRAINAGE\ DU 2 MP\HYDROLOGY\PROPOSED\DU2INT.DAT

********** FILE: DU34INT.DAT

MODEL REVISED: 12-5-2019

PROJECT: MASTER DRAINAGE REPORT FOR DU 3/4 AT EASTMARK

THIS MODEL IS AN EXERPT OF THE FULL BUILD OUT MODEL. NO REFERENCE TO OTHER MODELS IS REQUIRED TO RUN THIS MODEL.

MODEL REVISION DESCRIPTION:

THIS MODEL IS AN EXERPT OF THE MODEL PROVIDED BY THE FLOOD CONTROL DISTRICT OF MARICOPA COUNTY (WS4-SEM.DAT). LAND USES FOR DU 3/4, HAVE BEEN UPDATED TO REFLECT DETAILED PLANNING. THE UNDEVELOPED PORTION OF DU 5N AND 6N HAS BEEN REVISED TO THE UNDEVELOPED FORTION OF DU 5N AND 6N HAS BEEN REVISED TO REMAIN AS EXISTING LAND USE. LAND USES FOR DU 1 AND 2 HAVE BEEN REVISED TO REMAIN AS EXISTING LAND USE FOR THIS INTERIM CONDITION. THIS IS AN INTERIM CONDITION MODEL WHICH INCLUDES ONSITE MODELING FOR THE FOLLOWING DEVELOPMENT UNITS WHICH HAVE HAD DETAILED MASTER PLANS PREPARED, INCLUDING: DU 8/9, 35, 7N, 5N, 6N, AND 6S. THE REMAINING ONSITE IS CONTEMPLATED AS EXISTING LAND USE.

MODEL REVISED BY: WOOD, PATEL & ASSOCIATES, INC. STEVE MCKEE, P.E.

FILE PATH:

Z:\EASTMARK\2019\195036\PROJECT_SUPPORT\REPORTS\DRAINAGE\ DU 3-4 MP_UPDATE\HYDROLOGY\PROPOSED\DU34INT.DAT

FILE: DU34INT.DAT

MODEL REVISED: 9-25-2017

PROJECT: MASTER DRAINAGE REPORT FOR DU 3/4 AT EASTMARK

THIS MODEL IS AN EXERPT OF THE FULL BUILD OUT MODEL. NO REFERENCE TO OTHER MODELS IS REQUIRED TO RUN THIS MODEL.

MODEL REVISION DESCRIPTION:

THIS MODEL IS AN EXERPT OF THE MODEL PROVIDED BY THE FLOOD CONTROL DISTRICT OF MARICOPA COUNTY (WS4-SEM.DAT). LAND USES FOR DU 3/4, 5N, AND 6N HAVE BEEN UPDATED TO REFLECT DETAILED PLANNING. LAND USES FOR DU 1 AND 2 HAVE BEEN REVISED TO REMAIN AS EXISTING LAND USE FOR THIS INTERIM CONDITION. THIS IS AN INTERIM CONDITION MODEL WHICH INCLUDES ONSITE MODELING FOR THE FOLLOWING DEVELOPMENT

UNITS WHICH HAVE HAD DETAILED MASTER PLANS PREPARED, INCLUDING: DU $8/9,\ 3S,\ 7N,\ 5N,\ 6N,\ AND 6S.$ THE REMAINING ONSITE IS CONTEMPLATED AS EXISTING LAND USE.

MODEL REVISED BY: WOOD, PATEL & ASSOCIATES, INC. STEVE MCKEE, P.E.

FILE PATH: Z:\EASTMARK\2017\174708\PROJECT_SUPPORT\REPORTS\DRAINAGE\ DU 3-4 MP_UPDATE\HYDROLOGY\PROPOSED\DU34INT.DAT

************ FILE: DU56INT.DAT

MODEL REVISED: 4-10-2017

PROJECT: MASTER DRAINAGE REPORT FOR DU 5, 5N, AND 6 SOUTH AT EASTMARK

THIS MODEL IS AN EXERPT OF THE FULL BUILD OUT MODEL. NO REFERENCE TO OTHER MODELS IS REQUIRED TO RUN THIS MODEL.

MODEL REVISION DESCRIPTION:

THIS MODEL IS AN EXERPT OF THE MODEL PROVIDED BY THE FLOOD CONTROL DISTRICT OF MARICOPA COUNTY (W84-SEM.DAT). LAND USES FOR DU 5,50,65, 60, AND PARCELS 3/4-1 THROUGH 3/4-4 WITHIN DU 3/4 HAVE BEEN UPDATED TO REFLECT DETAILED PLANNING. LAND USES FOR DU 1, 2, AND THE REMAINING DU 3/4 HAVE BEEN REVISED TO REMAIN AS EXISTING LAND USE FOR THIS INTERIM CONDITION. THIS IS AN INTERIM CONDITION MODEL WHICH INCLUDES ONSITE MODELING FOR THE FOLLOWING DEVELOPMENT UNITS WHICH HAVE HAD DETAILED MASTER PLANS PREPARED, INCLUDING: DU 8/9, 33, AND 7N. THE REMAINING ONSITE IS CONTEMPLATED AS EXISTING LAND USE.

MODEL REVISED BY: WOOD, PATEL & ASSOCIATES, INC. STEVE MCKEE, P.E.

FILE PATH: R:\MESA PROVING GROUNDS\2016\164528\PROJECT SUPPORT\REPORTS\DRAINAGE\ DU 5-5N-6S MASTER PLAN\HYDROLOGY\DU56INT.DAT

FILE: DU6SINT.DAT

MODEL REVISED: 10-1-2015

PROJECT: MASTER DRAINAGE REPORT FOR DU 6 SOUTH AT EASTMARK

THIS MODEL IS AN EXERPT OF THE FULL BUILD OUT MODEL. NO REFERENCE TO OTHER MODELS IS REQUIRED TO RUN THIS MODEL.

MODEL REVISION DESCRIPTION:

THIS MODEL IS AN EXERPT OF THE MODEL PROVIDED BY THE FLOOD CONTROL THIS MODEL IS AN EXERPT OF THE MODEL PROVIDED BY THE FLOOD CONTROL DISTRICT OF MARICORA COUNTY (WS4-SEM.DAT). LAND USES FOR DU 6S AND PHASE 1 WITHIN PARCEL 10 OF DU 3/4 HAVE BEEN UPDATED TO REFLECT DETAILED PLANNING. LAND USES FOR DU 5E,THE REMAINING DU 3/4, AND THE UNDEVELOPED PORTION OF DU 6N HAS BEEN REVISED TO REMAIN AS EXISTING LAND USE FOR THIS INTERIM CONDITION. THIS IS AN INTERIM CONDITION MODEL WHICH INCLUDES ONSITE MODELING FOR THE FOLLOWING DEVELOPMENT UNITS WHICH HAVE HAD DETAILED MASTER PLANS PREPARED, INCLUDING: DU 8/9, 3S, AND 7N. THE REMAINING ONSITE IS CONTEMPLATED AS EXISTING LAND USE.

MODEL REVISED BY: WOOD, PATEL & ASSOCIATES, INC. STEVE MCKEE, E.I.T.

FILE PATH:

R:\MESA PROVING GROUNDS\2015\154382\PROJECT SUPPORT\REPORTS\DRAINAGE\ DU 6S MASTER PLAN\HYDROLOGY\DU6SINT.DAT

FILE: DU5EINT.DAT

MODEL REVISED: 04-21-2014

PROJECT: MASTER DRAINAGE REPORT FOR DU 5 EAST AT EASTMARK

THIS MODEL IS AN EXERPT OF THE FULL BUILD OUT MODEL. NO REFERENCE TO OTHER MODELS IS REQUIRED TO RUN THIS MODEL.

MODEL REVISION DESCRIPTION:

THIS MODEL IS AN EXERPT OF THE MODEL PROVIDED BY THE FLOOD CONTROL DISTRICT OF MARICOPA COUNTY (WS4-SEM.DAT). LAND USE FOR DU 5E HAS CHANGED FROM GOLF TO INDUSTRIAL. AREAS THAT PREVIOUSLY DRAINED TO GOLF WHERE 100-YEAR, 24-HOUR RETENTION WAS PROVIDED WILL NOW BE REQUIRED TO SELF RETAIN RETENTION VOLUME FROM THEIR SITE FOR THE 100-YEAR, 24-HOUR STORM PEAK FLOWS HAVE REMAINED THE SAME. THIS IS AN INTERIM CONDITION MODEL WHICH INCLUDES ONSITE MODELING FOR AREAS THAT HAVE HAD DETAILED MASTER PLANS DEPEMPEND AND THE REMAINING ONSITE IS CONTEMPLATED AS MASTER PLANS PREPARED AND THE REMAINING ONSITE IS CONTEMPLATED AS EXISTING LAND USE

MODEL REVISED BY: WOOD, PATEL & ASSOCIATES, INC. DANIEL MATTHEWS, P.E.

R:\MESA PROVING GROUNDS\2014\144173\PROJECT SUPPORT\REPORTS\DRAINAGE\ DU 5E DRAINAGE MASTER PLAN\HYDROLOGY\DU5EINT.DAT

FILE: EMDU5E.DAT

MODEL REVISED: 04-18-2014

PROJECT: EASTMARK MASTER DRAINAGE UPDATE (FOR DEVELOPMENT UNIT 5 EAST)

THIS IS A POST DEVELOPED MODEL REVISION TO REFLECT PLANNED LAND USES FOR DEVELOPMENT UNIT 5 EAST (DU 5E).

MODEL REVISION DESCRIPTION:

THIS MODEL IS AN EXERPT OF THE MODEL PROVIDED BY THE FLOOD CONTROL DISTRICT OF MARICOPA COUNTY (WS4-SEM.DAT). LAND USE FOR DU 5E HAS CHANGED FROM GOLF TO INDUSTRIAL. AREAS THAT PREVIOUSLY DRAINED TO GOLF WHERE 100-YEAR, 24-HOUR RETENTION WAS PROVIDED WILL NOW BE REQUIRED TO SELF RETAIN RETENTION VOLUME FROM THEIR SITE FOR THE 100-YEAR, 24-HOUR STORM PEAK FLOWS HAVE REMAINED THE SAME. THE REMAINING PORTION OF LAND THAT WAS ASSOCIATED WITH GOLF HAS BEEN REVISED TO RESIDENTIAL USE.

MODEL REVISED BY: WOOD, PATEL & ASSOCIATES, INC. DANIEL MATTHEWS, P.E.

FILE PATH:

R:\MESA PROVING GROUNDS\2014\144173\PROJECT SUPPORT\REPORTS\DRAINAGE\ EASTMARK OVERALL MASTER DRAINAGE UPDATE\HYDROLOGY\PROPOSED\EMDU5E.DAT

```
FILE: EMDU34.DAT
```

MODEL REVISED: 04-14-2014

PROJECT: EASTMARK MASTER DRAINAGE UPDATE FOR DEVELOPMENT UNIT 3/4

THIS IS A POST DEVELOPED MODEL REVISION TO REFLECT PLANNED LAND USES FOR DEVELOPMENT UNIT $3/4~({\rm DU}~3/4)\,.$

MODEL REVISION DESCRIPTION:

THIS MODEL IS AN EXERPT OF THE MODEL PROVIDED BY THE FLOOD CONTROL DISTRICT OF MARICOPA COUNTY (WS4-SEM.DAT). LAND USE FOR DU 3/4 HAS BEEN REVISED TO REFLECT MORE DETAILED PLANNING. MINOR ADJUSTMENTS TO LAND USES OUTSIDE OF DU 3/4 HAVE BEEN MADE. ADDITIONALLY WATERSHED BOUNDARIES HAVE BEEN REVISED TO REFLECT A CONCEPTUAL MASS GRADE PLAN PROVIDED TO WOOD/PATEL BY A CONSULTANT OF THE DEVELOPER DMB MESA PROVING GROUNDS LLC.

MODEL REVISED BY: WOOD, PATEL & ASSOCIATES, INC. DANIEL MATTHEWS, P.E.

FILE PATH:

R:\MESA PROVING GROUNDS\2011\113697.09\PROJECT SUPPORT\REPORTS\ EASTMARK OVERALL DRAINAGE MASTER UPDATE\HYDROLOGY\PROPOSED\EMDU34.DAT

MODEL REVISED: 12-11-2013

PROJECT: EASTMARK MASTER DRAINAGE UPDATE FOR DEVELOPMENT UNIT 3 SOUTH

THIS IS A POST DEVELOPED MODEL REVISION TO REFLECT PLANNED LAND USES FOR DEVELOPMENT UNIT 3 SOUTH (DU-3S).

MODEL REVISION DESCRIPTION:

THIS MODEL IS AN EXERPT OF THE MODEL PROVIDED BY THE FLOOD CONTROL DISTRICT OF MARICOPA COUNTY (WS4-SEM.DAT). LAND USES FOR DU-3S ARE CONSISTENT WITH THE PREVIOUS MODEL (EMDU89.DAT) THEREFORE RESULTING PEAK FLOWS HAVE REMAINED THE SAME.

MODEL REVISED BY: WOOD, PATEL & ASSOCIATES, INC. DANIEL MATTHEWS, P.E.

FILE PATH: R:\MESA PROVING GROUNDS\2011\113697.08\PROJECT SUPPORT\REPORTS\ EASTMARK OVERALL DRAINAGE MASTER UPDATE\HYDROLOGY\PROPOSED\EMDU3S.DAT

FILE: EMDU89.DAT

MODEL REVISED: 1-22-2013

PROJECT: EASTMARK 646

THIS IS A POST DEVELOPED MODEL REVISION TO REFLECT UPDATED PLANNING FOR DEVELOPMENT UNITS 8&9 (DU 8&9).

MODEL REVISION DESCRIPTION:

THIS MODEL IS AN EXERPT OF THE MODEL PROVIDED BY THE FLOOD CONTROL DISTRICT OF MARICOPA COUNTY (WS4-SEM.DAT). ONSITE WATERSHEDS WERE UPDATED TO REFLECT CURRENT PLAN FOR DEVELOPMENT UNITS 8 & 9.

MODEL REVISED BY: WOOD, PATEL & ASSOCIATES, INC. DARREN E. SMITH, P.E. FILE PATH: R:\MESA PROVING GROUNDS\2012\123835\PROJECT SUPPORT\REPORTS\ DRAINAGE\HYDROLOGY\PROPOSED\EMDU89.DAT

FILE: MPGDU7.DAT

MODEL REVISED: 09-07-2011

PROJECT: MESA PROVING GROUNDS

THIS MODEL SHOULD REPLACE WS4-SEM.DAT IN THE HEC-1 RUN SEQUENCE SPECIFIE BELOW. REFERENCING WS2-NEM.DSS IS STILL REQUIRED.

THIS IS A POST DEVELOPED MODEL REVISION TO REFLECT UPDATED PLANNING FOR DEVELOPMENT UNIT 7 (DU7)PROVIDED BY ARIZONA LAND DESIGN ON 09/02/20109/02/2011.

MODEL REVISION DESCRIPTION:

THIS MODEL IS AN EXERPT OF THE MODEL PROVIDED BY THE FLOOD CONTROL DISTRICT OF MARICOPA COUNTY (WS4-SEM.DAT). ONSITE WATERSHEDS WERE UPDATED TO REFLECT A GRADING PLAN PROVIDED BY LD TEAM ON 8/30/2011. MODELING OF THE POWERLINE FLOODMAY HAS BEEN UPDATED TO REFLECT THE EXISTING SECTIONS AND SLOPE PER AS-BUILT DRAWINGS ACROSS THE MPG SITE

MODEL REVISED BY: WOOD, PATEL & ASSOCIATES, INC. DANIEL W. MATTHEWS, E.I.T

FILE PATH:

R:\MESA PROVING GROUNDS\2011\113697\PROJECT SUPPORT\REPORTS\ DRAINAGE\HYDROLOGY\MPGDU7.DAT

FILE: MPG20RT2.DAT

MODEL REVISED: 04-25-2011

PROJECT: MESA PROVING GROUNDS

THIS MODEL SHOULD REPLACE WS4-SEM.DAT IN THE HEC-1 RUN SEQUENCE SPECIFIE BELOW. REFERENCING WS2-NEM.DSS IS STILL REQUIRED.

THIS IS A 100-YEAR, 2-HOUR RETENTION SCENARIO MODEL USING THE 20MSF COMMERCIAL SPACE AND 15K DU LAND PLAN PROVIDED BY SWABACK PARTNERS ON 12/12/07.

MODEL REVISION DESCRIPTION:

THIS MODEL IS AN EXERPT OF THE MODEL PROVIDED BY THE FLOOD CONTROL DISTRICT OF MARICOPA COUNTY (WS4-SEM.DAT). ONSITE WATERSHEDS 01 AMD 20 WERE UPDATED TO REFLECT THE INCORPORATION OF THE FIRST SOLAR SITE IN THE NORTHEAST CORNER OF DU-6. WATERSHED 02 WAS SPLIT INTO 02A AND 02B. LAND USE WAS CHANNED TO INDUSTRIAL FOR 02B AND ENTIRELEY RESIDENTIAL FOR 02A. THE FIRST SOLAR SITE RUNOFF WILL NOW BE RETAINED ENTIRELY ONSITE.

MODEL REVISED BY: WOOD, PATEL & ASSOCIATES, INC. STEPHEN M. SCINTO, P.E.

FILE PATH: R:\MESA PROVING GROUNDS\2010\103564.04\PROJECT SUPPORT\REPORTS\ DRAINAGE\HYDROLOGY\POST-DEVELOPED 100YR2HR RETENTION MODEL\ MPG20RT2.DAT

FILE: MPG20RT2.DAT

MODEL REVISED: 09-16-08

PROJECT: MESA PROVING GROUNDS

THIS MODEL SHOULD REPLACE WS4-SEM.DAT IN THE HEC-1 RUN SEQUENCE SPECIFIE BELOW. REFERENCING WS2-NEM.DSS IS STILL REQUIRED.

THIS IS A 100-YEAR, 2-HOUR RETENTION SCENARIO MODEL USING THE 20MSF COMMERCIAL SPACE AND 15K DU LAND PLAN PROVIDED BY SWABACK PARTNERS ON 12/12/07.

MODEL REVISION DESCRIPTION:

THIS MODEL IS AN EXERPT OF THE MODEL PROVIDED BY THE FLOOD CONTROL DISTRICT OF MARICOPA COUNTY (WS4-SEM.DAT). ONSITE WATERSHEDS 01, 02, 03, AND 06 WERE UPDATED TO REFLECT THE CURRENT GOLF COURSE CONFIGURATION.

MODEL REVISED BY: WOOD, PATEL & ASSOCIATES, INC. DANIEL W. MATTHEWS, E.I.T.

FILE PATH:

R:\MESA PROVING GROUNDS\2006\062753\PROJECT SUPPORT\HYDRO\MDR-20-15 LAND PLAN\2ND SUBMITTAL(COM)\HYDROLOGY\MPG20RT2.DAT

FILE: MPG20RT2.DAT

MODEL REVISED: 05-15-08

PROJECT: MESA PROVING GROUNDS

MODEL REVISION DESCRIPTION:

THIS MODEL SHOULD REPLACE WS4-SEM.DAT IN THE HEC-1 RUN SEQUENCE SPECIFIE BELOW. REFERENCING WS2-NEM.DSS IS STILL REQUIRED.

THIS IS A 100-YEAR, 2-HOUR RETENTION SCENARIO MODEL USING THE 20MSF COMMERCIAL SPACE AND 15K DU LAND PLAN PROVIDED BY SWABACK PARTNERS ON $12/12/07\,.$

THIS MODEL IS AN EXERPT OF THE MODEL PROVIDED BY THE FLOOD CONTROL DISTRICT OF MARICOPA COUNTY (WS4-SEM.DAT). WATERSHED 79A WAS UPDATED AS REQUESTED BY FLOOD CONTROL DISTRICT OF MARICOPA COUNTY TO REDUCE THE PERCENT IMPERVIOUS VALUE FROM 80% TO 0% TO MATCH THE LAND USE AS MODELED WITHIN THE EAST MESA ADMP.

MODEL REVISED BY: WOOD, PATEL & ASSOCIATES, INC. DANIEL W. MATTHEWS, E.I.T.

FILE PATH:

R:\MESA PROVING GROUNDS\2006\062753\PROJECT SUPPORT\HYDRO\MDR-20-15 LAND PLAN\2ND SUBMITTAL\POST-DEVELOPED 100YR2HR RETENTION MODEL (MPG20RT2) MPG20RT2.DAT

FILE: MPG20RT2 DAT

MODEL REVISED: 01-08-08

PROJECT: MESA PROVING GROUNDS

MODEL REVISION DESCRIPTION:

THIS MODEL SHOULD REPLACE WS4-SEM.DAT IN THE HEC-1 RUN SEQUENCE SPECIFIE BELOW. REFERENCING WS2-NEM.DSS IS STILL REQUIRED.

THIS IS A 100-YEAR, 2-HOUR RETENTION SCENARIO MODEL USING THE 20MSF COMMERCIAL SPACE AND 15K DU LAND PLAN PROVIDED BY SWABACK PARTNERS ON $12/12/07\,.$

THIS MODEL IS AN EXERPT OF THE MODEL PROVIDED BY THE FLOOD CONTROL THIS MODEL IS AN EXERPT OF THE MODEL PROVIDED BY THE FLOOD CONTROL DISTRICT OF MARICOPA COUNTY (MS4-SEM.DAT). WATERSHEDS 68A, 68B, 70A, 70B, 71, 73B, 73C, 74B, 74C, 75, 77B, 77C, 78B, 78C, AND 79A HAVE ALL BEEN UPDATED TO REFLECT CURRENT WATERSHED DELINEATIONS, NEW DEVELOPMENT, CURRENT RETENTION, AND FLOOD ROUTING. BASIN 75 HAS BEEN UPDATED TO REFLECT PLANNED DEVELOPEMENT FOR THE MESA PROVING GROUNDS SITE.

MODEL REVISED BY: WOOD, PATEL & ASSOCIATES, INC. DANIEL W. MATTHEWS, E.I.T.

FILE PATH: R:\MESA PROVING GROUNDS\2006\062753\PROJECT SUPPORT\HYDRO\MDR-20-15 LAND PLAN\HYDROLOGY\POST-DEVELOPED 100YR2HR RETENTION MODEL (MPG20RT2)) MPG20RT2.DAT

ID Kirkham Michael: 1/22/03 Last Revised Date: 1/ Filename: WS4-SEM.DAT

Comments Dated 1/22/03 (CJ)

This model should be used ONLY for the Rittenhouse and Chandler Heights Basin Design Project - Final Design Analyses.

This model is one of several models that represent the EMF watershed. This model covers the Southeast Mesa Area and should reference as a DSS the watershed model for the Northeast Mesa Area (Filename WS2-NEM.DAT).

This model is necessary to determine the input hydrographs for the This model is necessary to determine the input hydrographs for the Rittenhouse Basin Design HEC-RAS Unsteady State analysis. To develop the necessary input hydrographs the following models should be run in order. Because the files utilize a TAPE21 file to export import hydrographs between models, prior to running the FIRST model (WSI-NWM.DAT) any existing TAPE21 file in the directory should be deleted. The run procedure order is:

- 1) WS1-NWM.DAT 2) WS2-NEM.DAT 3) WS3-QCSW.DAT
- 4) WS4-SEM.DAT (referencing WS2-NEM.DSS for the DSS file)
 5) RT1-BASE.DAT

The necessary input hydrographs for the Rittenhouse Basin analysis are determined in RTI-BASE. In that output file, the hydrograph at RWFLDI should be exported and used as the input hydrograph at the EMF Reach 4 Cross Section 17.082. And the hydrograph at RITTEN should be exported and used as the input hydrograph for the Rittenhouse Main Channel at Cross Section 820.00

***************************************	****
**** NOTE BY PRIMATECH ENGINEERS:	****
**** DATE: 06/12/2001	* * * *
**** THE NEW FILE NAME IS: SEBTALT2.DAT	* * * *
**** THE FILE WAS RENAMED AS < <rtbtalt2.dat>> FOR THE EAST MARICOPA</rtbtalt2.dat>	* * * *
**** FLOODWAY CAPACITY MITIGATION PROJECT, BY FLOOD CONTROL DISTRICT OF	****
**** MARICOPA COUNTY.	* * * *
**** THE FILE WAS RENAMED < <rtbtalt3.dat>> AND UPDATED USING GREEN AND</rtbtalt3.dat>	* * * *
**** AMPT FUTURE CONDITIONS FOR BASINS 258 TO 268.	* * * *
***************************************	****

THIS MODEL WAS ORIGINALLY MIDDOUT.DAT THAS BEEN MODIFIED BY CPE (7/200) FOR ALTERNATIVE 2 FOR THE EAST MARICOPA FLOOWAY CAPACITY MITIGATION AND MULTI-USE CORRIDOR STUDY TO ROUTE BOTH THE POWERLINE FLOOWAY AND THE SANTAN FREEWAY CHANNEL INTO THE RAY BASIN PRIOR THEIR OUTFALL INTO THE EMF ******* Model files changed by Collins/Pina Engineering to reflect multi-use design concepts (recreation and environment) proposed throughout the entire PMC Correlation EMF Corridor. July 2000 VERSION 8.06 CPE 7/31/00 **** FILENAME: MIDDOUT.DAT ALL CIP INFRASTRUCTURE IS IN PLACE, FUTURE CONDITIONS LANDUSE IS IN PLACE FLOW IS ROUTED UP ELLSWORTH ROAD IN A EARTH LINED CHANNEL ***** PRODUCED BY DIBBLE AND ASSOCIATES AND HOSKIN ENGINEERING CONSULTANTS. File Name: Final8.Dat File Name: Final8.Dat Revised - Jan. 2000 by SZ (Wood/Patel) From Final7.dat - new Z-V & Sideweir Revised - Jan. 2000 by SZ (Wood/Patel) from Final6.dat - 60% review comments Revised - Dec. 1999 by SZ (Wood/Patel) from Final4.dat Revised - Nov. 1999 by SZ (Wood/Patel) from Final4.dat Revised - Nov. 1999 by SZ (Wood/Patel) from Final4.dat Revised - May 1999 by SZ (Wood/Patel) for Final Model from Opt1.dat. Revised - May 1999 by SZ (Wood/Patel) for Optin 1, Based on Model SDIB.DAT REVISED - MAY, 1999 BY VAS TO INCORPORATE INCREASE OF SUBBASIN RETENTION AND REVISIONS TO THE REGIONAL DETENTION BASIN STORAGE REVISED - FEB, 1999 BY VALERIE SWICK, FCD OF MARICOPA COUNTY REVISED - MAY, 1998 BY D&A REVISED BY VALERIE SWICK, FEB. 26, 1998 FLOWS FROM DETENTION BASIN LOCATED AT NE CORNER OF ELLIOT AND ELLISWORTH ROADS IS ROUTED TO THE SOUTHWEST BY SIPHON DRAW TO SUBBASIN TOA. FROM THERE THEY WILL BE ROUTED BY A CHANNEL TO THE EMF. FLOWS FROM SUBBASINS ADJACENT TO SANTAN FREEWAY ALIGNMENT WILL BE ROUTED SOUTH TO SUBBASIN 70A WHERE THEY WILL BE COMBINED WITH FLOW IN SIPHON DRAW. EAST MESA AREA DRAINAGE MASTER PLAN AREA SOUTH OF SUPERSTITION (U.S. HWY 60) AUGUST 1997 SOUTHEAST MESA HIGH RESOLUTION MODEL ATTENTION SUBBASING 75, 79A, 79B, 78E, LANDUSES WERE NOT CHANGED BECAUSE IT WAS FELT THAT THEIR FUTURE CONDITIONS LANDUSES WOULD BE SIMILAR TO THE EXISTING CONDITIONS LANDUSES. RETENTION VOLUMES WILL ALSO NOT BE UTILIZED FOR SUBBASINS 75, 79A, 79B, 78E SOME QUEEN CREEK SUBBASINS WILL ALSO NOT HAVE RETENTION VOLUMES, EITHER BECAUSE THEY LIE IN PINAL COUNTY AND WE DON'T KNOW PINAL COUNTIES PLANS OR THEY LIE IN THE SANTAN MOUNTAINS AND WON'T GET DEVELOPED WILLIAMS GATEWAY AIRPORT (SUBBASINS 80A, 80B, 81A, AND 81B) ARE MODELED AS FUTURE CONDITIONS AND HAVE RETENTION VOLUMES FOR THE 100YR 2HE STORM FILENAME: SDIBE.DAT FILENAME: SDIBB.DAT THIS MODEL REPRESENTS THE FUTURE CONDITION OF THE WATERSHED. TOTAL DRAINAGE AREA IS APPROXIMATELY 213 SQ. MI. THIS MODEL USES A Kn VALUE OF 0.09 FOR DESERT LAND USE DUE TO SHEET FLOW CONDITIONS 100-YEAR 24-HOUR FREQUENCY ARBAL REDUCTIONS FROM FCD HYDROLOGY MANUAL THIS MODEL INCLUDES INFLOW FROM NORTH OF THE SUPERSTITION FREEWAY AND EAST OF THE CAP data from the queen creek adms has been added to calculate flows into the EMF. Muskingum routing nsteps were adjusted to be within the suggested RANGE . METHODOLOGY THE US CORPS OF ENGINEERS FLOOD HYDROLOGY MODEL HEC-1 DATED SEP1990 VER 4.0 SCS TYPE II RAINFALL DISTRIBUTION S-GRAPH HYDROGRAPH GREEN AND AMPT INFILTRATION EQUATION USED FOR CALCULATING LOSSES GREEN AND AMPT INFILIATION EQUATION USED FOR CALCULATING HOSSES NORMAL DEPTH STORAGE CHANNEL ROUTING APPROXIMATE DIRECTION, LOCATION, AND LENGTH OF THE WASHES HAVE BEEN EVALUATED BASED ON FIELD INVESTIGATION, USGS MAPS, LANDIS AERIAL SURVEYS

EVALUATED BASED ON FIELD INVESTIGATION, USGS MAPS, LANDIS AERIAL SURVEYS DATED 1994 THE NOAA TECHNICAL MEMORANDUM NOAA ATLAS 2 DEPTH AREA RATIOS

ORIGINAL STUDY PERFORMED BY LISA C. YOUNG AND AFSHIN AHOURAIYAN, UPDATED BY DAVID DEGERNESS (OCT-DEC, 1996). REVIEWED BY VALERIE A. SWICK AND AMIR MOTAMEDI OF THE FLOOD CONTROL DISTRICT HYDROLOGY BRANCH ENGINEERING DIVISION, FLOOD CONTROL DISTRICT OF MARICOPA COUNTY, DECEMBER - JULY 1995.

ASSUMED VELOCITY OF 1 FT/SEC FOR SHEET FLOW, 2-3 FT/SEC FOR WASH/NATURAL CHANNEL, 3 FT/SEC FOR ROAD AND GRASS CHANNEL, 10FT/SEC FOR CONCRETE CHANNEL

VELOCITIES FOR ADMP IMPROVEMENT CHANNELS FROM DIBBLE AND ASSOCIATES SUGGESTED ALTERNATIVES (JULY 1, 1997)

**** THE FOLLOWING NOTE WAS ADDED BY PRIMATECH ENGINEERS ON 06-12-2001 **** NOTE: MUST USE NEBUILD.DSS AS THE DSS FILE TO IMPORT FLOWS ACROSS THE SUPERSTITION FREEWAY.

NOTE: MUST USE NDIBF.DSS AS THE DSS FILE TO IMPORT FLOWS ACROSS THE SUPERSTITION FREEWAY.

DDM MCUHP2 SE MESA ADMP - SOUTH OF SUPERSTITION FWY, FUTURE CONDITIONS

631 IO	OUTPUT CONTROL V IPRNT IPLOT QSCAL	ARIABLES 5 0 0.	PRINT CO PLOT COM HYDROGRA	ONTROL VTROL APH PLOT S	CALE					
IT	HYDROGRAPH TIME NMIN IDATE ITIME NQ NDDATE NDTIME ICENT	DATA 5 1APR97 0000 600 3APR97 0155 19	MINUTES STARTING STARTING NUMBER (ENDING I CENTURY	IN COMPUT 3 DATE 3 TIME 0F HYDROGRA DATE TIME MARK	ATION INTERV	7AL 2S				
	COMPUTATION IN TOTAL TIM	TERVAL E BASE	.08 HG 49.92 HG	DURS						
	ENGLISH UNITS DRAINAGE AREA PRECIPITATION DEPT LENGTH, ELEVATION FLOW STORAGE VOLUME SURFACE AREA TEMPERATURE	SQUA H INCH FEET CUBI ACRE ACRE DEGR	RE MILES ES C FEET PH -FEET S EES FAHRI	ER SECOND ENHEIT						
633 JD	INDEX STORM NO. STRM TRDA	1 3.60 .01	PRECIPIT TRANSPOS	TATION DEP SITION DRA	TH INAGE AREA					
634 PI	PRECIPITATION 00 00 00 00 00 00 00 00 00 0	PATTERN .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .01 .01	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00
644 JD	INDEX STORM NO. STRM TRDA	2 3.58 1.00	PRECIPIT TRANSPOS	TATION DEP SITION DRA	TH INAGE AREA					
0 PI	PRECIPITATION .00 .00 .00 .00 .00 .00 .00 .0	PATTERN .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .01 .01	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00

		.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
645	JD	INDEX STORM NO. STRM TRDA	3 3.49 5.00	PRECIPI TRANSPO	TATION DEPI SITION DRAI	TH INAGE AREA					
0	PI	PRECIPITATION .00 .00	PATTERN .00 .00	.00 .00	.00 .00	.00 .00	.00	.00	.00	.00	.00
		.00 .00 .00	.00 .00 .00	.00.00	.00.00	.00.00	.00.00	.00	.00	.00	.00.00
		.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00
		.00 .00 .00	.00 .00 .00	.00 .00 .00	.00.00	.00 .00 .00	.00 .00 .00	.00.00	.00 .00 .01	.00.00	.00 .00 .01
		.03 .01 .00	.09 .01 .00	.09 .01 .00	.09 .01 .00	.01 .01 .00	.01 .01 .00	.01 .00 .00	.01 .00 .00	.01 .00 .00	.01 .00 .00
		.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00
		.00 .00 .00	.00	.00.00	.00.00	.00.00	.00.00	.00	.00	.00	.00.00
		.00 .00 .00	.00	.00	.00 .00 .00	.00 .00 .00	.00	.00	.00	.00 .00 .00	.00 .00 .00
646	JD	.00 INDEX STORM NO. STRM TRDA	.00 4 3.38 10.00	.00 PRECIPI TRANSPO	.00 TATION DEPI SITION DRAI	.00 TH INAGE AREA	.00	.00	.00		
0	PI	PRECIPITATION .00	PATTERN	.00	.00	.00	.00	.00	.00	.00	.00
		.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00
		.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00
		.00 .00 .00	.00 .00 .00	.00 .00 .00	.00.00	.00 .00 .00	.00.00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00
		.01 .03 .01	.01 .09 .01	.01 .09 .01	.01 .09 .01	.01 .01 .01	.01 .01 .01	.01 .01 .00	.01 .01 .00	.03	.03 .01 .00
		.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00
		.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
		.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00
647	JD	.00 INDEX STORM NO.	.00 5	.00	.00	.00	.00	.00	.00		
0	DT	TRDA	30.00	TRANSPO	SITION DEPI	INAGE AREA					
0	PI	PRECIPITATION .00 .00	PATTERN .00 .00	.00	.00	.00	.00	.00	.00	.00	.00
		.00 .00 .00	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00
		.00 .00 .00	.00 .00 .00	.00 .00 .00	.00.00	.00.00	.00.00	.00	.00.00	.00	.00.00
		.00 .00 .01	.00 .00 .01	.00	.00	.00	.00 .00 .01	.00	.00	.00	.00
		.03 .01 .00 .00	.01 .00 .00	.01 .00 .00	.01 .00 .00	.01 .00 .00	.01 .00 .00	.00 .00 .00	.00 .00 .00	.0000	.00.
		.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00 .00
		.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00
		.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00.00	.00 .00 .00	.00 .00 .00	.00	.00

648 JD	INDEX STORM NO. STRM TRDA	6 3.10 60.00	PRECIPI TRANSPO	TATION DEPI SITION DRAI	TH INAGE AREA					
0 PI	PRECIPITATION 00 00 00 00 00 00 00 00 00 0	PATTERN .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .01 .00 .00						
649 JD	INDEX STORM NO. STRM TRDA	7 3.05 90.00	PRECIPI' TRANSPO	TATION DEPI SITION DRAI	TH INAGE AREA					
0 PI	PRECIPITATION .00 .00 .00 .00 .00 .00 .00 .0	PATTERN .00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .01 .03 .01 .00 .00 .00 .00 .00 .00 .00 .00 .00
650 JD	INDEX STORM NO. STRM TRDA	8 3.00 120.00	PRECIPI TRANSPO	TATION DEPI SITION DRAI	TH INAGE AREA					
0 PI	PRECIPITATION .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	PATTERN .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.000 .000 .000 .000 .000 .000 .000 .00						

651 JD INDEX STORM NO. 9

33

		STRM TRDA	2.97 150.00	PRECIPITA TRANSPOSI	TION DEPTH TION DRAINA	GE AREA					
0 PT	PRECI	PITATION	PATTERN								
		00	.00	.00	.00	.00	.00	.00	.00	.00	.00
		00	.00	.00	.00	.00	.00	.00	.00	.00	.00
		.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
		00	.00	.00	.00	.00	.00	.00	.00	.00	.00
		00	.00	.00	.00	.00	.00	.00	.00	.00	.00
		.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
		.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
		.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
		00	.00	.00	.00	.00	.00	.00	.00	.00	.00
		.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
		.01	.00	.01	.01	.01	.01	.00	.01	.03	.03
		03	.09	.09	.09	.01	.01	.01	.01	.01	.01
		.01	.01	.01	.01	.01	.01	.00	.00	.00	.00
		00	.00	.00	.00	.00	.00	.00	.00	.00	.00
		00	.00	.00	.00	.00	.00	.00	.00	.00	.00
		.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
		00	.00	.00	.00	.00	.00	.00	.00	.00	.00
		00	.00	.00	.00	.00	.00	.00	.00	.00	.00
		00	.00	.00	.00	.00	.00	.00	.00	.00	.00
		.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
		.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
		00	.00	.00	.00	.00	.00	.00	.00	.00	.00
	WADNING EVOPOD	.00	.00	.00	.00	.00	.00	.00	.00		
	WARNING EACESS	AI PONDII	NG LLSS IF	IAN ZERO F	OR PERIOD.	LACESS SEI	10 ZERO				
					HYDROGRAPH	MULTIPLIED	D BY .2	5			
					HYDROGRAPH	MULTIPLIED	D BY .2	5			
					HYDROGRAPH	MULTIPLIED	вч.2	5			
					HYDROGRAPH	MULTIPLIED	вч.2	5			
					HYDROGRAPH	MIILTIPLIE	BY 2	5			
					UVDDOGDADU	MILTIDITE		-			
					HIDROGRAPH	MOPLIAPTER) BY .2	5			
					HYDROGRAPH	MULTIPLIED	D BY .2	5			
					HYDROGRAPH	MULTIPLIED	D BY .2	5			
					HYDROGRAPH	MULTIPLIED	D BY .2	5			
					HYDROGRAPH	MULTIPLIED	BY .0	0			
					HYDROGRAPH	MULTIPLIED	BY .0	0			
					HYDROGRAPH	MULTIPLIE	BY .0	0			
							, DI .0	0			
					HIDROGRAPH	MOPITAPTER	JEY .U	U			
					HYDROGRAPH	MULTIPLIED	D BY .0	0			
					HYDROGRAPH	MULTIPLIED	D BY .0	0			
					HYDROGRAPH	MULTIPLIED	D BY .0	0			
					HYDROGRAPH	MULTIPLIED	. BY .0	0			
					HYDROGRAPH	MULTIPLIED	BY .0	0			
1	WARNING EXCESS	AT PONDIN	NG LESS TH	HAN ZERO F	OR PERIOD.	EXCESS SET	TO ZERO				
				F TIME	RUNO LOW IN CUBI IN HOURS,	FF SUMMARY C FEET PER AREA IN SQ	SECOND DUARE MIL	ES			
			PEAK	TIME O	F AVERA	GE FLOW FOR		PERIOD	BASTN	MAXIMUM	TIME OF
	OPERATION	STATION	FLOW	V PEAK					AREA	STAGE	MAX STAGE
+					6-HO	UR 24-H	IOUR	72-HOUR			
	HYDROGRAPH AT										
+		04A	112	2. 12.08	1	2.	4.	2.	.05		
	DIVERSION TO										
+		04ARET	112	2. 12.08		9.	3.	1.	.05		
	HYDROGRAPH AT										
+		RET04A	39	9. 12.33		4.	1.	1.	.05		
+	HYDROGRAPH AT	75	146	5 12 50	2	7	9	4	44		
Ŧ		/5	140	J. 12.JU	2	/.	5.	1.	. 11		
+	2 COMBINED AT	CP23	164	1. 12.42	3	1.	11.	5.	.49		
	HYDROGRAPH AT										
+		73A	378	3. 13.33	9	6.	24.	12.	.95		
	ROUTED TO		_			~	~ ~				
+		73ATB	355	. 13.50	9	ь.	24.	12.	.95		
+	HYDROGRAPH AT	73R	749	3. 12.08	б	8.	20.	10.	. 43		
	DIVERSION TO	.50	, 10	12.00	0						
+	DIVERSION TO	73bret	748	8. 12.08	6	8.	20.	10.	.43		

+	HYDROGRAPH AT	RET73B	4.	20.42	2.	1.	0.	.43
+	2 COMBINED AT	CP73B	355.	13.50	96.	25.	12.	1.38
+	ROUTED TO	73BTC	332.	13.83	95.	24.	12.	1.38
+	HYDROGRAPH AT	73C	822.	12.25	94.	28.	14.	.58
+	DIVERSION TO	73CRET	822.	12.25	70.	19.	9.	.58
+	HYDROGRAPH AT	RET73C	501.	12.42	33.	10.	5.	.58
+	2 COMBINED AT	CP73C	440.	12.42	124.	33.	16.	1.96
+	ROUTED TO	73T74C	347.	14.08	122.	33.	16.	1.96
+	HYDROGRAPH AT	74A	306.	13.33	77.	19.	9.	.75
+	ROUTED TO	74ATB	300.	13.42	77.	19.	9.	.75
+	HYDROGRAPH AT	74B	455.	12.25	55.	16.	8.	.33
+	DIVERSION TO	74bret	455.	12.25	33.	9.	4.	.33
+	HYDROGRAPH AT	RET74B	389.	12.33	27.	8.	4.	.33
+	2 COMBINED AT	CP74B	452.	12.33	103.	27.	13.	1.08
+	ROUTED TO	74BTC	414.	12.42	103.	27.	13.	1.08
+	HYDROGRAPH AT	74C	516.	12.25	62.	18.	9.	.34
+	DIVERSION TO	74CRET	516.	12.25	45.	12.	6.	.34
+	HYDROGRAPH AT	RET74C	297.	12.42	22.	6.	3.	.34
+	3 COMBINED AT	CP74C	635.	12.50	237.	64.	31.	3.39
+	DIVERSION TO	10BRET	537.	12.42	11.	3.	1.	3.39
+	HYDROGRAPH AT	RET10B	604.	12.50	227.	61.	29.	3.39
+	ROUTED TO	10BT75	526.	14.17	225.	61.	29.	3.39
+	HYDROGRAPH AT	02B	276.	12.17	32.	11.	5.	.16
+	DIVERSION TO	02BRET	276.	12.17	26.	7.	4.	.16
+	HYDROGRAPH AT	RET02B	77.	12.50	10.	3.	2.	.16
+	ROUTED TO	2BT1	16.	15.92	9.	3.	2.	.16
+	HYDROGRAPH AT	01A	0.	12.58	0.	0.	0.	.61
+	HYDROGRAPH AT	05A	281.	12.33	36.	11.	5.	.19
+	DIVERSION TO	05ARET	281.	12.33	27.	7.	3.	.19
+	HYDROGRAPH AT	RET05A	162.	12.58	13.	4.	2.	.19
+	HYDROGRAPH AT	06A	196.	12.25	19.	6.	3.	.12
+	DIVERSION TO	06ARET	196.	12.25	19.	5.	2.	.12
+	HYDROGRAPH AT	RET06A	1.	17.08	1.	0.	0.	.12
+	ROUTED TO	6AT1	1.	18.67	1.	0.	0.	.12
+	4 COMBINED AT	CP1	162.	12.58	20.	7.	3.	1.08
+	ROUTED TO	1T3	95.	12.83	19.	7.	3.	1.08
					35			

+	HYDROGRAPH AT	03A	112.	12.17	12.	4.	2.	.06
+	DIVERSION TO	03RETA	112.	12.17	12.	3.	2.	.06
+	HYDROGRAPH AT	RET03A	2.	15.92	1.	0.	0.	.06
+	2 COMBINED AT	CP3	95.	12.83	20.	7.	4.	1.13
+	ROUTED TO	3T7A	62.	13.17	19.	7.	4.	1.13
+	HYDROGRAPH AT	08	681.	12.58	110.	34.	16.	.64
+	DIVERSION TO	08RET	681.	12.58	89.	24.	12.	.64
+	HYDROGRAPH AT	RET08	304.	12.92	32.	10.	5.	.64
+	ROUTED TO	8T6B	205.	13.08	32.	10.	5.	.64
+	HYDROGRAPH AT	06B	172.	12.25	19.	б.	3.	.10
+	DIVERSION TO	06BRET	172.	12.25	14.	4.	2.	.10
+	HYDROGRAPH AT	RET06B	100.	12.42	7.	2.	1.	.10
+	2 COMBINED AT	CP6B	214.	13.08	38.	12.	б.	.74
+	ROUTED TO	6BT7C	206.	13.17	38.	12.	б.	.74
+	HYDROGRAPH AT	09	141.	12.25	13.	4.	2.	.09
+	DIVERSION TO	09RET	141.	12.25	13.	4.	2.	.09
+	HYDROGRAPH AT	RET09	0.	24.33	0.	0.	0.	.09
+	HYDROGRAPH AT	07C	238.	12.08	20.	б.	3.	.11
+	DIVERSION TO	07CRET	238.	12.08	20.	б.	3.	.11
+	HYDROGRAPH AT	RET07C	0.	.00	0.	0.	0.	.11
+	3 COMBINED AT	CP7C	206.	13.17	38.	12.	б.	.95
+	DIVERSION TO	DTV7C	33.	12.50	22.	8.	4.	.95
+	HYDROGRAPH AT	DIV7C	172.	13.17	16.	4.	2.	.95
+	ROUTED TO	7CT7B	146.	13.25	16.	4.	2.	.95
+	HYDROGRAPH AT	07B	269.	12.25	29.	9.	4.	.15
+	DIVERSION TO	07BRET	269.	12.25	29.	9.	4.	.15
+	AYDROGRAPH AT	RET07B	0.	.00	0.	0.	0.	.15
+	2 COMBINED AT	CP7B	146.	13.25	16.	4.	2.	1.10
+	HYDROGRAPH AT	05B	319.	12.17	31.	9.	4.	.16
+	UVDDOGDADU AT	05BRET	319.	12.17	22.	б.	3.	.16
+	AIDRUGKAPH AT	RET05B	182.	12.33	12.	3.	2.	.16
+	NADBUGBYDR Yw	5bt7a	98.	12.50	11.	3.	2.	.16
+	DIVERSION TO	07A	237.	12.25	28.	8.	4.	.13
+	DIVERSION TO	07ARET	237.	12.25	28.	8.	4.	.13
+	4 COMBINED AT	RET07A	0.	.00	0.	0.	0.	.13

+		CP7A	189.	13.33	41.	13.	6.	2.52
+	ROUTED TO	7AT12	176.	13.42	41.	13.	6.	2.52
+	HYDROGRAPH AT	12A	248.	12.17	26.	8.	4.	.12
+	DIVERSION TO	12ARET	248.	12.17	20.	5.	3.	.12
+	HYDROGRAPH AT	RET12A	72.	12.42	8.	3.	1.	.12
+	2 COMBINED AT	CP12	185.	13.42	48.	16.	8.	2.63
+	ROUTED TO	12T12C	169.	13.58	47.	16.	8.	2.63
+	HYDROGRAPH AT	12B	157.	12.17	16.	5.	2.	.09
+	DIVERSION TO	12bret	157.	12.17	14.	4.	2.	.09
+	HYDROGRAPH AT	RET12B	19.	12.58	4.	1.	1.	.09
+	ROUTED TO	2BT12C	11.	12.92	4.	1.	1.	.09
+	HYDROGRAPH AT	12C	128.	12.25	15.	5.	2.	.08
+	DIVERSION TO	12CRET	128.	12.25	13.	4.	2.	.08
+	HYDROGRAPH AT	RET12C	14.	12.75	3.	1.	1.	.08
+	HYDROGRAPH AT	13	170.	12.25	20.	б.	3.	.12
+	DIVERSION TO	13RET	170.	12.25	20.	б.	3.	.12
+	HYDROGRAPH AT	RET13	0.	.00	0.	0.	0.	.12
+	HYDROGRAPH AT	DIV7C	33.	12.50	22.	8.	4.	.95
+	ROUTED TO	7CT13	33.	13.67	22.	8.	4.	.95
+	2 COMBINED AT	CP13	33.	13.67	22.	8.	4.	.12
+	HYDROGRAPH AT	11B	284.	12.33	38.	12.	6.	.22
+	DIVERSION TO	11BRET	284.	12.33	38.	11.	5.	.22
+	HYDROGRAPH AT	RET11B	б.	15.33	4.	1.	1.	.22
+	ROUTED TO	11BT13	6.	15.67	4.	1.	1.	. 22
+	5 COMBINED AT	CP12C	209.	13.58	75.	26.	13.	3.13
+	ROUTED TO	13T75	205.	13.67	75.	26.	13.	3.13
+	HYDROGRAPH AT	14	245.	12.08	26.	9.	4.	.12
+	DIVERSION TO	14RET	245.	12.08	22.	б.	3.	.12
+	HYDROGRAPH AT	RET14	42.	12.42	8.	3.	1.	.12
+	HYDROGRAPH AT	11A	93.	12.42	14.	5.	2.	.08
+	DIVERSION TO	llaret	93.	12.42	14.	4.	2.	.08
+	HYDROGRAPH AT	RET11A	3.	14.75	2.	1.	0.	.08
+	ROUTED TO	11AT75	3.	15.17	2.	1.	0.	.08
+	HYDROGRAPH AT	10	234.	12.42	33.	10.	5.	.17
+	DIVERSION TO	lORET	234.	12.42	28.	8.	4.	.17
+	HYDROGRAPH AT	RET10	67.	12.83	9.	3.	1.	.17

+	ROUTED TO	10T75	36.	13.42	9.	3.	1.	.17
+	5 COMBINED AT	CP75	661.	14.00	291.	86.	41.	6.89
+	HYDROGRAPH AT	77A	556.	13.75	174.	43.	21.	1.74
+	ROUTED TO	77ATB	525.	13.83	173.	43.	21.	1.74
+	HYDROGRAPH AT	77B	542.	12.17	48.	14.	7.	.35
+	DIVERSION TO	77bret	529.	12.08	31.	8.	4.	.35
+	HYDROGRAPH AT	RET77B	455.	12.25	20.	б.	3.	.35
+	2 COMBINED AT	CP77B	529.	13.83	191.	49.	23.	2.09
+	ROUTED TO	77btc	503.	14.08	189.	49.	23.	2.09
+	HYDROGRAPH AT	77C	383.	12.33	46.	14.	7.	.28
+	DIVERSION TO	77CRET	383.	12.33	35.	9.	5.	.28
+	HYDROGRAPH AT	RET77C	204.	12.58	15.	4.	2.	.28
+	2 COMBINED AT	C77C	511.	14.08	202.	53.	25.	2.37
+	ROUTED TO	77CT78	494.	14.42	198.	53.	25.	2.37
+	HYDROGRAPH AT	78A	601.	13.75	188.	47.	23.	1.88
+	ROUTED TO	78ATB	520.	14.42	187.	47.	23.	1.88
+	HYDROGRAPH AT	78B	598.	12.25	62.	17.	8.	.40
+	2 COMBINED AT	C78B	608.	12.25	245.	64.	31.	2.28
+	ROUTED TO	78BTC	501.	14.75	245.	64.	31.	2.28
+	HYDROGRAPH AT	78C	529.	12.17	52.	15.	7.	.29
+	DIVERSION TO	78CRET	3.	8.33	3.	1.	0.	.29
+	HYDROGRAPH AT	RET78C	529.	12.17	52.	14.	7.	. 29
+	2 COMBINED AT	C78C	904.	12.25	293.	77.	37.	2.56
+	2 COMBINED AT	C78C2	951.	14.58	475.	127.	61.	4.93
+	ROUTED TO	78CT79	940.	14.75	473.	127.	61.	4.93
+	HYDROGRAPH AT	20	370.	12.42	52.	15.	7.	. 27
+	DIVERSION TO	20RET	370.	12.42	49.	13.	б.	. 27
+	HYDROGRAPH AT	RET20	38.	13.25	7.	2.	1.	. 27
+	2 COMBINED AT	CP22B	944.	14.75	475.	128.	62.	5.20
+	HYDROGRAPH AT	16	174.	12.25	18.	5.	3.	.10
+	DIVERSION TO	16RET	174.	12.25	14.	4.	2.	.10
+	HIDROGRAPH AT	RET16	57.	12.50	5.	1.	1.	.10
+	DIVERSION TO	18	398.	12.42	51.	15.	7.	.32
+	DIVERSION TO	18RET	398.	12.42	47.	12.	б.	.32
+	ROUTED TO	RET18	51.	13.00	8.	3.	1.	.32
+	KUUILU TU	18T19	35.	13.08	8.	3.	1.	.32
					38			

+	2 COMBINED AT	CP19A	57.	12.50	13.	4.	2.	.42
+	HYDROGRAPH AT	19	250.	12.25	29.	9.	4.	.14
+	DIVERSION TO	19RET	250.	12.25	21.	б.	3.	.14
+	HYDROGRAPH AT	RET19	134.	12.42	10.	3.	1.	.14
+	2 COMBINED AT	CP19B	175.	12.42	23.	7.	3.	.56
+	HYDROGRAPH AT	17	169.	12.33	21.	7.	3.	.14
+	DIVERSION TO	17RET	169.	12.33	21.	б.	3.	.14
+	HYDROGRAPH AT	RET17	1.	23.00	Ο.	0.	0.	.14

*** NORMAL END OF HEC-1 ***

NOAA Atlas Precipitation Data

1

• • . •

Page 1 of 5

							P FR F	oint Equ Rom	PRE Enc' Noa	ecipi Y es Ia at	itati Tima Tlas	on Tes 14			·					
	Arizona 33.3325 vr 11.62 W 1420 feet from "Precipitation-Frequency Atlas of the United States" NOAA Atlas 14, Voluno 1, Version 4 G.M. Bonnin, D. Martín, B. Lin, T. Parzybok, M. Vekta, and D. Riley NOAA, National Weather Service, Silver Spring, Maryland, 2006 Extracted: Mon Oct 22 2007 Confidence Limits Seasonality Location Maps Other Info. GIS data Maps Help D																			
Co	Confidence Limits Seasonality Location Maps Other Info. GIS data Maps Help D																			
	Precipitation Frequency Estimates (inches)																			
ARI*	5 mîn	10 min	15 min	30 min	60 min	120 mir	3 hr	6 hr	12 hr	24 hr	48 br	4 dav	7 day	10 day	20 day	30 day	45 day	60 day	1	
1	0.19	0.29	0.36	0.48	0.60	0.68	0.73	0.88	0.99	1.21	1.27	1.47	1.62	1.77	2.19	2.56	2.99	3.33	1	
2	0.25	0.38	0.47	0.63	0.78	0.89	0.93	L.11	1.26	1.52	1.61	1.87	2.07	2.25	2.81	3.28	3.84	4.28	İ	
5	0.34	0.51	0.64	0.85	1.06	1.18	1.22	1.42	1.58	1.95	2.08	2.45	2.71	2.96	3.68	4.29	5.02	5.58	i	
10	0.40	0,61	0.76	1.03	1.27	1.40	1.45	1.66	1.84	2.29	2,44	2.92	3.24	3.52	4.35	5.06	5.90	6.53	İ	
25	0.50	0.76	0.94	1.26	1.56	1.71	1.77	2.00	2.19	2.75	2.95	3.59	3.98	4.32	5.25	6.10	7.05	7.76		
50	0.57	0.86	1.07	1.44	1.78	1.95	2.03	2.26	2.46	3.12	3.35	4.13	4.59	4.96	5.94	6.91	7.93	8.68		
<u>.00 .</u>	0.64	0.97	1.21	1.63	2.01	2,19	2.30	2.54	2.74	3.51	3.77	4.70	5.24	5.64	6.65	7.73	8.81	9.60		•
00	0.71	1.09	1.35	1.81	2.24	2.44	2.58	2.82	3.02	3.90	4.20	5.31	5.92	6.36	7.37	8.57	9.69	10.49		
00	0.81	1.24	1.53	2.06	2,56	2.78	2.97	3.21	3.40	4.45	4.79	6.17	6.89	7.36	8.35	9.70	10.84	11.66	·	
000	0.89	1.35	1.68	2.26	2.79	3.04	3.28	3.52	3:69	4.88	5.25	6.87	7.68	8,17	9.10	10,57	11.71	12.53		

..... Text version of table * These precipitation frequency estimates are based on a <u>partial duration series.</u> AN is the Average Recumence Interval. Please refer to the <u>documentation</u> for more information. NOTE: Formatting forces estimates near zero to appear as zero.

MESA PROVENG GROUNDS ONSETE PRECEPITATION DEPTHS

http://hdsc.nws.noaa.gov/cgi-bin/hdsc/buildout.perl?type=pf&units=us&series=nd&state

Precipitation Frequency Data Server

. •

.

.

۰. .

•

• ;•

٩.

÷

http://hdsc.nws.noaa.gov/cgi-bin/hdsc/buildout.peri?type=pf&units=us&series=pd&state... 10/22/2007

Fartial duration based Point Precipitation Frequency Estimates Version: 4 33.9325 N 111.62 N 1428 ft

Confidence Limits -

• : •

* Upper bound of the 90% confidence interval Precipitation Frequency Estimates (inches)																		
ARI*	* 5) nin	• 10 min	15 min	30 min	60 min	120 min	3 hr	6 hr	12 hr	24 hr	48 hr	4 day	7 day	10 day	20 day	30 đay	45 day	60 day
1	0.23	0.35	0.44	0.59	0.73	0.82	0.89	1.03	1.14	1.36	1.42	1.62	1.79	1.95	2.42	2.81	3.29	3.65
2.	0.30	0.46	0.57	0.77	0.96	1.06	1.14	1.31	1.44	1.72	1.81	2.07	2.28	2.48	3.10	3.60	4.22	4.70
5	0.41	0.62	0.77	1.04	1.29	1.41	1.49	1.67	1.81	2.19	2.33	2.70	2.99	3.25	4.05	4.70	5.51	6.12
10	0.49	0.75	0.93	1.25	1.54	1.68	1.76	1.95	2.10	2.57	2,74	3.22	3.57	3.86	4.79	5.54	6.48	7.16
25	0.60	0.91	1.13	1.52	1.88	2.04	2.14	2.33	2.49	3.09	3.30	3.94	4,38	4.73	5.77	6.68	7.75	8.52
50	0.68	1.04	1.29	1.74	2.15	2.32	2.44	2.63	2.79	3.50	3.75	4.54	5.05	5.43	6.54	7.56	8.71	9.53
100	0.77	1.17	1.45	1.95	2.42	2.61	2.76	2.95	3.11	3.93	4.22	5.18	5.76	6.18	7.33	8.48	9.69	10.55
200	0.86	1.30	1.61	2,17	2.69	2.90	3.09	3.28	3.43	4.38	4.71	5.86	6.53	6.97	8.13	9.41	10.67	11.55
500	0.98	1.49	1.84	2.48	3.07	3.30	3.56	3.74	3.88	5.01	5.40	6.83	7.62	8.11	9.24	10.69	11.98	12.88
1000	1.07	1.63	2.02	2.72	3.36	3.63	3.94	4.11	4.24	5.53	5.95	7.63	8.53	9.02	10.11	11.71	12.99	13.88

25

"These paciplision frequency estimates are based on a <u>partial dansion series</u>. All is the Average Recommon herval. Please refer to the <u>documentation</u> for more information. NOTE: Forunting prevents estimates near zero to appear as zero.

* Lower bound of the 90% confidence interval

http://hdsc.nws.noaa.gov/cgi-bin/hdsc/buildout.perl?type=pf&units=us&series=pd&state... 10/22/2007

H

Precipitation Frequency Data Server

	Precipitation Frequency Estimates (inches)																	
ARI* (years	ARI** 5 10 15 30 60 120 3 6 12 24 48 4 7 10 20 30 45 60 years) min min min min min hr hr hr hr day day																	
1	0.16	0.24	0.30	0.41	0.50	0.58	0.61	0.76	0.87	1.08	1.14	1.34	1.48	1.61	1.99	2.33	2.72	3.04
2	0.21	0.32	0.40	0.53	0.66	0.75	0.79	0.96	1.10	1.37	1.44	1.70	1.88	2.06	2.55	2.98	3.49	3.90
5	0.28	0.43	0.53	0.71	0.88	0.99	1.03	1.22	1.39	1.74	1.86	2.22	2.46	2.69	3.34	3.90	4.56	5.08
10	0.34	0.51	0.63	0.85	1.05	1.17	1.21	1.42	1.60	2.04	2.18	2.64	2.93	3.19	3.93	4.60	5.35	5.93
25	0.41	0.62	0.76	1.03	1.27	1.41	1.46	1.69	1.88	2.43	2.61	3.23	3.58	3.90	4.73	5.52	6.38	7.03
50	0.46	0.70	0.86	1.16	1.44	1.58	1.64	1.88	2.09	2.73	2.94	3.69	4.10	4.44	5.33	6.22	7.14	7.83
100	0.51	0.77	0.96	1.29	1.59	1.75	1.82	2.07	2.29	3.04	3.27	4.17.	4.64	5.01	5.94	6.93	7.90	8.62
200	0.56	0.84	1.05	1.41	1.75	1.91	2.01	2.26	2.49	3.34	3.60	4.66	5.20	5.60	6.54	7.63	8.63	9.38
500	0.62	0.94	1.16	1.57	1.94	2.12	2.25	2.51	2.73	3.74	4.03	5.34	5.96	6.40	7.33	8.55	2.58	10.35
1000	0.66	1.00	1.25	1.68	2.08	2.27	2.42	2,68	2.92	1.04	4.35	5.88	5.57	7.03	7.92	7.23	0.28	11.05

The lower bound of the confidence interval at 90% confidence level is the value which 5% of the simulated quantile values for a given frequency are large than. These precipitation frequency estimates are based on a partial duration maximum series. ARI is the Average Recurrence Interval.

Please refer to the documentation for more information. NOTE: Formation prevents estimates near zero to appear as zero.

Maps -

These maps were produced using a direct map request from the U.S. Consus Burney Mapping and Cartonnahic Resources Tiger Map Server.

Please read disclaimer for more information.

http://hdsc.nws.noaa.gov/cgi-bin/hdsc/buildout.perl?tvpe=nf&units=us&series=nd&state. 10/22/2007

Precipitation Frequency Data Server

Other Maps/Photographs -

<u>View USGS digital orthophoto quadrangle (DOQ)</u> covering this location from TerraServer; USGS Aerial Photograph may also be available

from this site. A DOQ is a computer-generated image of an aerial photograph in which image displacement caused by terrain relief and camera tilts has been removed. It combines the image characteristics of a photograph with the geometric qualities of a map. Visit the <u>USGS</u> for more information.

Watershed/Stream Flow Information -

Find the Watershed for this location using the U.S. Environmental Protection Agency's site,

Climate Data Sources -

Precipitation frequency results are based on data from a variety of sources, but largely NCDC. The following links provide general information about observing sites in the area, regardless of if their data was used in this study. For detailed information about the stations used in this study, please refer to our documentation.

Using the National Climatic Data Center's (NCDC) station search engine, locate other climate stations within:

+/-30 minutes ...OR... +/-1 degree of this location (33.3325/-111.62). Digital ASCII data can be obtained directly from NCDC.

Find Natural Resources Conservation Service (NRCS) SNOTEL (SNOwpack TELemetry) stations by visiting the Western Regional Climate Center's state-specific SNOTEL station maps.

Hydrometeorological Design Studies Center DOC/NOAA/National Weather Service 1325 East-West Highway Stiver Spring, MD 20910 (301) 713-1669 Questions?; <u>HDSC.Onestions@nose.gov</u>

Disclaimer

http://hdsa nwa nasa oav/asi-hin/hdsa/hnildant ner!?tvne=nf&unitanas&ceriesand&ctote 10/22/2007

Interim Condition HEC-1 Sub-Basin Data

WOOD/PATEL

Table 1 - Interim Condition HEC-1 Sub-Basin Data

Description: Sub-basin data based on aerial photo and proposed topography

Location Eastmark - East Mesa, Arizona

Reference: DDMSW Version 5.3.0

Totals	138,162,887	3171.77	4.957							
75	12,198,123	280.03	0.438	7131	1.35	1.49	1432.0	1400.0	1429	0.27
20	7,514,092	172.50	0.270	5897	1.12	1.23	1430.0	1412.0	2182	0.41
19	3,855,367	88.51	0.138	2937	0.56	0.62	1420.0	1410.0	1250	0.24
18	8,921,616	204.81	0.320	5147	0.97	1.07	1435.0	1420.0	2085	0.39
17	3,919,629	89.98	0.141	4430	0.84	0.92	1412.0	1394.0	2485	0.47
16	2,747,312	63.07	0.099	2922	0.55	0.61	1425.0	1410.0	1269	0.24
14	3,248,624	74.58	0.117	2211	0.42	0.46	1397.0	1389.0	1070	0.20
13	3,372,581	77.42	0.121	4566	0.86	0.95	1407.0	1390.0	1398	0.26
12C	2,098,178	48.17	0.075	2951	0.56	0.62	1400.0	1392.0	1361	0.26
12B	2,423,721	55.64	0.087	2764	0.52	0.57	1402.0	1395.0	1337	0.25
12A	3,264,256	74.94	0.117	2890	0.55	0.61	1405.0	1392.0	1178	0.22
11B	6,101,226	140.06	0.219	5867	1.11	1.22	1420.0	1392.0	1878	0.36
11A	2,172,787	49.88	0.078	5833	1.10	1.21	1422.0	1398.0	2530	0.48
10	4,768,643	109.47	0.171	5320	1.01	1.11	1444.0	1423.0	2970	0.56
9	2,609,899	59.92	0.094	3313	0.63	0.69	1419.0	1402.0	1321	0.25
8	17,725,625	406.92	0.636	7230	1.37	1.51	1444.0	1415.0	4310	0.82
7C	3,158,912	72.52	0.113	2120	0.40	0.44	1419.0	1396.5	880	0.17
7B	4,214,789	96.76	0.151	3494	0.66	0.73	1417.0	1394.0	1502	0.28
7A	3,652,969	83.86	0.131	3999	0.76	0.84	1413.0	1404.0	889	0.17
6B	2,865,742	65.79	0.103	2885	0.55	0.61	1427.0	1417.0	1778	0.34
6A	3,355,141	77.02	0.120	3816	0.72	0.79	1446.0	1429.0	950	0.18
5B	4,357,936	100.04	0.156	3095	0.59	0.65	1423.0	1409.0	640	0.12
5A	5,234,676	120.17	0.188	4356	0.83	0.91	1437.0	1425.0	2073	0.39
4A	1,424,412	32.70	0.051	2569	0.49	0.54	1413.0	1400.0	1179	0.22
3A	1,555,580	35.71	0.056	3201	0.61	0.67	1432.0	1417.0	935	0.18
2B	4,415,981	101.38	0.158	3937	0.75	0.83	1460.0	1448.0	923	0.17
1A	16,985,070	389.92	0.609	7497	1.42	1.56	1458.0	1425.0	2326	0.44
Sub-Basin ID	(sq. ft.)	Basin Area (acres)	(sq. mi)	Length (ft)	Length (mi)	$(mi)^1$	(ft)	(ft)	Lca (ft)	Lca (mi)
						Length (100/	110.05	DOOF		
ONSITE BASINS										

DFFSITE BASINS (EAST OF SIGNAL BUTTE ROAD OR SOUTH OF RAY)													
Sub-Basin ID	Basin Area (sq. ft.)	Basin Area (acres)	Basin Area (sq. mi)	Length (ft)	Length (mi)	USGE (ft)	DSGE (ft)	Lca (mi)					
73A	26,400,845	606.08	0.947	12144	2.30	1567.3	1487.0	1.00					
73B	11,854,970	272.15	0.425	2957	0.56	1487.0	1470.0	0.28					
73C	16,310,497	374.44	0.585	7022	1.33	1480.0	1450.0	0.30					
74A	21,020,314	482.56	0.754	12672	2.40	1563.0	1461.7	1.00					
74B	9,278,312	213.00	0.333	6917	1.31	1490.0	1459.0	0.41					
74C	9,606,165	220.53	0.345	6442	1.22	1471.0	1440.0	0.40					
77A	48,480,538	1,112.96	1.739	15312	2.90	1559.0	1468.8	1.50					
77B	9,740,171	223.60	0.349	2957	0.56	1469.0	1453.0	0.26					
77C	7,769,721	178.37	0.279	4013	0.76	1457.0	1439.0	0.51					
78A	52,467,149	1,204.48	1.882	19536	3.70	1558.0	1452.6	2.10					
78B	11,047,090	253.61	0.396	3168	0.60	1460.0	1441.0	0.40					
78C	8,018,731	184.08	0.288	2640	0.50	1448.0	1432.1	0.30					
Totals	231,994,503	5325.86	8.322										

Notes:

1) 10% was added to onsite watercourse lengths to account for future roadway curvature.

Interim Condition HEC-1 Soil Data

Table 2 - Interim Condition HEC-1 - Soils Data

Post Developed Soil Data Description:

Location Eastmark - East Mesa, Arizona

Reference:

NRCS Web Soil Survey Aguila-Carefree Area Soil Survey

Sub-Basin ID	Soil Id	Soil Type	Area (S.F.)	Area (acres)	Area (sq. mi)
	1	Antho Sandy Loams	157198	3.61	0.006
	50	Estrella Loams	1936378	44.45	0.069
1A	75	Mohall Loam	13993650	321.25	0.502
	77	Mohall Clay Loam	897684	20.61	0.032
		TOTAL	16984910	389.92	0.609
	1	Antho Sandy Loams	490019	11.25	0.018
2B	75	Mohall Loam	3842428	88.21	0.137
		Monali Clay Loam	83429	1.92	0.003
	50	Estrella Loams	25534	0.59	0.001
	75	Mohall Loam	72037	1.65	0.003
3A	77	Mohall Clay Loam	1446628	33.21	0.052
	79	Mohall Clay	11851	0.26	0.0004
	77	TOTAL	1556050	35.71	0.056
40	70	Mohall Clay Loam	319998	6.76	0.011
4/\	112	Tremant Gravelly Sandy Loams	336283	7 10	0.025
	112	TOTAL	1536031	32.44	0.051
5.0	75	Mohall Loam	1282842	29.45	0.046
JA	77	Mohall Clay Loam	3951936	90.72	0.142
	-	TOTAL	5234778	120.17	0.188
	78	Mohall Clay Loam Calcareous Solum	181128	4.16	0.007
5B	77	Mohall Clav Loam	3822545	2.30	0.136
	79	Mohall Clay	251356	5.77	0.009
		TOTAL	4357936	100.04	0.156
6A	75	Mohall Loam	2527073	58.01	0.090
	77	Mohall Clay Loam	828068	19.01	0.030
	75	TOTAL Moball Loam	3355141	77.02	0.035
6B	78	Mohall Clay Loam Calcareous Solum	1885566	43.29	0.068
	77	Mohall Clay Loam	12352	0.28	0.0004
		TOTAL	2865743	65.79	0.103
7.	77	Mohall Clay Loam	1847591	42.41	0.066
7A	/9	Mohall Clay Tromont Grovelly Sondy Learne	27942	40.81	0.064
	112	TOTAL	3652970	83.86	0.131
	75	Mohall Loam	259093	5.95	0.009
7B	50	Estrella Loam	825316	18.95	0.030
	77	Mohall Clay Loam	3130380	71.86	0.112
	50	TOTAL	4214789	96.76	0.151
	50	Estrella Loam Moball Loam	13001/0	30.05	0.013
7C	77	Mohall Clay Loam	452950	10.40	0.016
	78	Mohall Clay Loam, Calcareous Solum	1043150	23.96	0.037
		TOTAL	3158710	72.52	0.113
	/5	Mohall Loam	/222583	165.81	0.259
	77	Moball Clay Loam	5602226	128.60	0.072
8	78	Mohall Clay Loam, Calcareous Solum	274476	6.30	0.010
	1	Antho Sandy Loams	517798	11.89	0.019
	112	Tremant Gravelly Sandy Loams	2090961	48.00	0.075
	75	IOIAL Mahali Laam	17725625	406.92	0.636
9	75	Mohall Clay Loam, Calcareous Solum	468434	40.16	0.063
3	112	Tremant Gravelly Sandy Loams	391661	8.99	0.014
		TOTAL	2609898	59.92	0.094
	112	Tremant Gravelly Sandy Loams	175566	4.03	0.006
	/7	Mohali Clay Loam	2610330	59.92	0.094
10	∠ 50	Estrella Loams	1201903	27.59	0.018
	115	Tremant-Antho Complex, 1% to 5% slopes	8070	0.19	0.0003
	1	Antho Sandy Loams	281547	6.46	0.010
		TOTAL	1491520	109.47	0.171
11A	55	Gilman Loams	79273	1.82	0.003
	112	remant Gravelly Sandy Loams	2093514	48.06	0.075
	55	Gilman Loams	8/08	43.00	0.076
11B	75	Mohall Loam	3314275	76.09	0.119
	112	Tremant Gravelly Sandy Loams	2778453	63.77	0.100
		TOTAL	6101226	140.06	0.219
	50	Estrella Loam	77012	1.77	0.003
12A	70	Mohall Clay	800554	18.38	0.029
	112	Tremant Gravelly Sandy Loams	442179	10.15	0.009
		TOTAL	3264256	74.94	0.117
	50	Estrella Loam	1583409	36.35	0.057
12B	75	Mohall Loam	511211	11.74	0.019
	11	Mohall Clay Loam	329088	/.55 55.64	0.011
	75	Moball Loam	2097850	48.16	0.075
12C	50	Estrella Loams	611	0.01	0.0000
		TOTAL	2097850	48.16	0.075

Sub-Basin	Soil Id	Soil Type	Area	Area
ID	Ooli Iu	oon type	(acres)	(sq. mi.)
13	75	Mohall Loam	77.42	0.121
		TOTAL	77.42	0.121
	50	Estrella Loams	10.93	0.017
14	75	Mohall Loam	21.45	0.034
	112	Tromont Gravelly Sandy Learns	21.00	0.016
	112	Total	74.58	0.050
	50	Estrella Loams	0.16	0.0003
	2	Mohall Loam	12.11	0.019
	78	Mohall Clay Loam	40.04	0.063
		TOTAL	52.31	0.082
	112	Tremant Gravelly Sandy Loams	81.20	0.128
17	55	Gilman Loams	7.32	0.011
	2	Antho Gravelly Sandy Loams	1.46	0.002
		TOTAL	89.98	0.141
	115	I ramant-Antho Complex , 1% to 5% slopes	12.71	0.020
	2 50	Antho Gravelly Sandy Loams	18.77	0.029
18	50	Estiella Loams	/ 20	0.122
10	78	Mohall Clav Loam Calcareous Solum	48.50	0.007
	77	Mohall Clay Loam	30.10	0.047
	112	Tremant Gravelly Sandy Loams	11.99	0.019
		TOTAL	204.81	0.320
73A	N/A	No Data Available	606.08	0.947
		TOTAL	606.08	0.947
	1	Antho Sandy Loams	73.75	0.115
	50	Estrella Loams	10.61	0.017
73B	55	Gilman Loams	15.78	0.025
	75	Mohall Loam	62.59	0.098
	112	Tromont Gravelly Sondy Loams	20.14	0.125
	112	Total	29.14	0.040
	1	Antho Sandy Loams	76.01	0.119
	50	Estrella Loams	85.37	0.133
730	75	Mohall Loam	128.81	0.201
	77	Mohall Clay Loam	84.25	0.132
		TOTAL	374.44	0.585
74A	N/A	No Data Available	482.56	0.754
		TOTAL	482.56	0.754
740	1	Antho Sandy Loams	112.04	0.1/5
74B	112	Tromont Gravelly Sondy Learns	97.34	0.152
	112	TOTAL	213.00	0.000
	1	Antho Sandy Loams	55.57	0.087
	50	Estrella Loams	11.47	0.018
74C	77	Mohall Clay Loam	136.29	0.213
	112	Tremant Gravelly Sandy Loams	16.76	0.026
	115	Tremant-Antho Complex, 1-5 %Slopes	0.44	0.001
		TOTAL	220.53	0.345
	77	Mohall Clay Loam	35.77	0.056
10	50	Estrolla Learna	9.40	0.015
15	78	Mohall Clay Loam, Calcareous Solum	37.31	0.000
	112	Tremant Gravelly Sandy Loams	1.88	0.003
		TOTAL	88.51	0.138
	22	Contine Clay Loam	115.12	0.181
20	78	Mohall Clay Loam, Calcareous Solum	0.07	0.0001
20	77	Mohall Clay Loam	11.71	0.018
	112	Tremant Gravelly Sandy Loams	45.60	0.071
	50	TOTAL	1/2.50	0.270
23	50	Estrella Loams	40.58	0.003
	50 55 77	Estrella Loams Gillman Loams Moball Clay Loam	40.58 9.09 66.95	0.003
	55 77 112	Estrella Loams Gillman Loams Mohall Clay Loam Tremant Gravelly Sandy Loams	40.58 9.09 66.95 23.20	0.003
	55 77 112	Estrella Loams Gillman Loams Mohall Clay Loam Tremant Gravelly Sandy Loams TOTAL	40.58 9.09 66.95 23.20 139.82	0.063 0.014 0.105 0.036 0.218
	55 77 112 77	Estrella Loams Gillman Loams Mohail Clay Loam Tremant Gravelly Sandy Loams TOTAL Mohail Clay Loam	40.58 9.09 66.95 23.20 139.82 103.31	0.063 0.014 0.105 0.036 0.218 0.161
24	55 77 112 77 79	Estrella Loams Gillman Loams Mohail Clay Loam Tremant Gravelly Sandy Loams TOTAL Mohail Clay Loam Mohail Clay	40.58 9.09 66.95 23.20 139.82 103.31 37.93	0.063 0.014 0.105 0.036 0.218 0.161 0.059
24	55 77 112 77 79 79	Estrella Loams Gillman Loams Mohall Clay Loams Tremant Gravelly Sandy Loams TOTAL Mohall Clay Loam Mohall Clay Mohall Clay	40.58 9.09 66.95 23.20 139.82 103.31 37.93 37.93	0.063 0.014 0.105 0.036 0.218 0.161 0.059 0.059
24	50 55 77 112 77 79 79 79 112	Estrella Loams Gillman Loams Mohall Clay Loam Tremant Gravelly Sandy Loams TOTAL Mohall Clay Loam Mohall Clay Mohall Clay Tremant Gravelly Sandy Loams	40.58 9.09 66.95 23.20 139.82 103.31 37.93 37.93 20.18	0.063 0.014 0.105 0.036 0.218 0.161 0.059 0.059 0.032
24	50 55 77 112 77 79 79 79 112	Estrella Loams Gillman Loams Tremant Gravelly Sandy Loams TOTAL Mohall Clay Loam Mohall Clay Mohall Clay Tremant Gravelly Sandy Loams TOTAL	40.58 9.09 66.95 23.20 139.82 103.31 37.93 37.93 20.18 199.35	0.063 0.014 0.105 0.036 0.218 0.161 0.059 0.059 0.032 0.311
24	50 55 77 112 77 79 79 79 112 50	Estrella Loams Gillman Loams Mohall Clay Loam Tremant Gravelly Sandy Loams TOTAL Mohall Clay Loam Mohall Clay Tremant Gravelly Sandy Loams TOTAL Estrella Loams	40.58 9.09 66.95 23.20 139.82 103.31 37.93 37.93 20.18 199.35 87.80	0.063 0.014 0.105 0.036 0.218 0.161 0.059 0.059 0.032 0.032 0.311 0.137
24	50 55 77 112 77 79 79 112 50 55 55	Estrella Loams Gillman Loams Mohail Clay Loam Tremant Gravelly Sandy Loams TOTAL Mohail Clay Mohail Clay Mohail Clay Tremant Gravelly Sandy Loams TOTAL Estrella Loams Gillman Loams	40.58 9.09 66.95 23.20 139.82 103.31 37.93 20.18 199.35 87.80 2.13	0.083 0.014 0.105 0.036 0.218 0.161 0.059 0.059 0.059 0.032 0.311 0.137 0.003
24 25	50 55 77 112 77 79 79 112 50 55 76 77	Estrella Loams Gillman Loams Gillman Loams Tremant Gravelly Sandy Loams ToTAL Mohall Clay Loam Mohall Clay Mohall Clay Tremant Gravelly Sandy Loams TOTAL Estrella Loams Gillman Loams Mohall Loam, Calcareous Solum Mohall Loam	40.58 9.09 66.95 23.20 139.82 103.31 37.93 37.93 20.18 199.35 87.80 2.13 4.52 14.50	0.083 0.014 0.105 0.036 0.218 0.161 0.059 0.059 0.059 0.032 0.311 0.137 0.003 0.007 0.022
24 25	50 55 77 112 77 79 79 112 50 55 76 77 112	Estrella Loams Gillman Loams Mohall Clay Loam Tremant Gravelly Sandy Loams TotAL Mohall Clay Loam Mohall Clay Mohall Clay Mohall Clay Tremant Gravelly Sandy Loams TOTAL Estrella Loams Gillman Loams Mohall Clay Loam Mohall Clay Loam Tremant Gravelly Sandy Loams	40.58 9.09 66.95 23.20 139.82 103.31 37.93 37.93 20.18 199.35 87.80 2.13 4.52 14.50 24.08	0.003 0.014 0.105 0.218 0.161 0.059 0.059 0.032 0.311 0.137 0.003 0.007 0.023 0.038
24 25	50 55 77 112 79 79 79 112 50 55 76 77 112	Estrella Loams Gillman Loams Mohail Clay Loams Tremant Gravelly Sandy Loams ToTAL Mohail Clay Loam Mohail Clay Tremant Gravelly Sandy Loams Gillman Loams Gillman Loams Mohail Loam, Calcareous Solum Mohail Clay Loam Tremant Gravelly Sandy Loams ToTAL	40.58 9.09 66.95 23.20 139.82 103.31 37.93 20.18 199.35 87.80 2.13 4.52 14.50 24.08 133.03	0.003 0.014 0.105 0.218 0.161 0.059 0.059 0.032 0.311 0.137 0.003 0.007 0.023 0.038 0.208

Sub-Basin	Soil Id	Soil Type	Area	Area
ID	oonin	oon type	(acres)	(sq. mi.)
	50	Estrella Loams	2.87	0.004
26	77	Mohall Clay Loam	6.53	0.010
	112	Tremant Gravelly Sandy Loams	19.63	0.031
		TOTAL	29.03	0.05
77A	N/A	No Data Available	1112.96	1.739
		TOTAL	1112.96	1.739
77B	1	Antho Sandy Loams	76.92	0.120
	112	I remant Gravelly Sandy Loams	65.29	0.102
	1	Antho Sandy Loams	142.21	0.007
	78	Moball Clay Loam, Calcareous Solum	8 70	0.007
770	112	Tremant Gravelly Sandy Loams	92.80	0.014
	115	Tremant-Antho Complex 1-5 %Slopes	0.11	0.0002
	77	Mohall Clay Loam	72.26	0.1129
		TOTAL	178.35	0.279
78A	N/A	No Data Available	1204.48	1.882
		TOTAL	1204.48	1.882
	77	Mohall Clay Loam	76.66	0.120
78B	22	Contine Clay Loam	69.61	0.109
	112	Tremant Gravelly Sandy Loams	107.33	0.168
		TOTAL	253.60	0.397
	22	Contine Clay Loam	128.67	0.201
78C	77	Mohall Clay Loam	2.76	0.004
	112	Tremant Gravelly Sandy Loams	52.65	0.082
		TOTAL	184.08	0.287
	50	Estrella Loams	55.97	0.087
68A1	55	Gillman Loams	57.12	0.089
	112	Tremant Gravelly Sandy Loams	16.74	0.026
	= 0	TOTAL	129.83	0.20
	50	Estrella Loams	18.01	0.028
68A2	55	Giliman Loams	12.43	0.019
	110	Monali Clay Loam	60.54	0.095
	112	Tremant Graveny Sandy Loams	10.74	0.020
	50	Estrolla Loama	19.01	0.029
68A2	55	Gillman Loams	12.43	0.020
00.12	77	Mohall Clay Loam	0.24	0.000
		TOTAL	30.68	0.047
	50	Estrella Loams	20.88	0.033
60D4	55	Gillman Loams	1.03	0.002
0001	77	Mohall Clay Loam	15.92	0.025
	112	Tremant Gravelly Sandy Loams	55.79	0.087
		TOTAL	93.62	0.147
68B2	50	Estrella Loams	23.20	0.036
0002	77	Mohall Clay Loam	15.41	0.024
		TOTAL	38.61	0.060
68B3	50	Estrella Loams	20.18	0.032
	(7	Mohali Clay Loam	2.54	0.004
<u> </u>	50	TOTAL Ectrolla Loama	22.72	0.036
70A1	50	Moball Clay Loam	10.54	0.028
1041	112	Tremant Gravelly Sandy Loame	5 75	0.010
<u> </u>	. 14	TOTAL	34.23	0.053
	77	Mohall Clay Loam	20.26	0.032
70A2	112	Tremant Gravelly Sandy Loams	2.58	0.004
		TOTAL	22.84	0.036
	50	Estrella Loam	19.10	0.0298
75	75	Mohall Loam	17.00	0.0266
75	77	Mohall Clay Loam	179.81	0.2810
	79	Mohall Clay	61.55	0.0962
		TOTAL	277.46	0.434
	2	Antho Gravelly Sandy Loams	2.95	0.0046
	22	Contine Clay Loam	197.30	0.3083
79A	76	Mohall Loam, Calcareous Solum	5.65	0.0088
	77	Mohall Clay Loam	60.05	0.0938
	78	Mohall Clay Loam, Calcareous Solum	223.12	0.3496
	112	I remant Gravelly Sandy Loams	149.83	0.2341
		TOTAL	638.90	0.999

Interim Condition HEC-1 Land Use Data

Description: Land use data based on proposed development

Location Eastmark - East Mesa, Arizona

Sub-Basin ID	Basin Area (sq. ft.)	Basin Area (acres)	Basin Area (sq. mi)	DU	Parcel(s) within DU	DU Area (ac)	Land Use	Land Use Area (sq. ft.)	Land Use Area (acres)	Land Use Area (sq. mi.)	Kn
1A	16,985,070	389.9	0.6092	DU5N	DU-5E	389.9	Low Density (Proving Grounds)	16,984,044	389.9	0.6092	0.060
20	4 415 001	101.4	0.1594	DU6N	DU-6A	86.5	Industrial	3,767,940	86.5	0.1352	0.040
20	4,415,961	101.4	0.1564			14.9	General Transportation	649,044	14.9	0.0233	0.035
				DU5N	DU-5A	25.0	Industrial	1,089,000	25.0	0.0391	0.040
3A	1,555,580	35.7	0.0558			5.7	Active Open Space	246,568	5.7	0.0089	0.050
						5.0	General Transportation	217,800	5.0	0.0078	0.035
							High Density Residential (10-15 Du/Acre)	831,996	19.1	0.0298	0.030
10	1 424 412	20.7	0.0511	2110	DU-2A, DU-	22.7	General Office	217,800	5.0	0.0078	0.035
44	1,424,412	32.1	0.0511	D02	2B	32.1	Active Open Space	78,408	1.8	0.0028	0.050
							General Transportation	296,208	6.8	0.0106	0.035
					6465	34.8	Small Lot Residential (4-6 DU/Acre)	1,363,428	31.3	0.0489	0.040
					0-4,0-3	54.0	General Transportation	152,460	3.5	0.0055	0.035
					6.6	19.0	Small Lot Residential (4-6 DU/Acre)	779,724	17.9	0.0280	0.040
					0-0	10.9	Active Open Space	43,560	1.0	0.0016	0.050
5A	5,234,676	120.2	0.1878	DU 6S	6-9, 6-17	24.9	Small Lot Residential (4-6 DU/Acre)	1,084,644	24.9	0.0389	0.040
					6-13 to 6-15	9.3	Medium Lot Residential (2-4 DU/Acre)	404,565	9.3	0.0145	0.045
					6-16, 6-18	9.0	Medium Lot Residential (2-4 DU/Acre)	390,816	9.0	0.0141	0.045
					6-19 to 6-23	21.5	Medium Lot Residential (2-4 DU/Acre)	935,699	21.5	0.0336	0.045
						1.8	Active Open Space	78,408	1.8	0.0028	0.050
					6-13 to 6-15	17.7	Medium Lot Residential (2-4 DU/Acre)	771,012	17.7	0.0277	0.045
5D	4 257 026	100.0	0.1562	DUCE	6-16, 6-18	27.7	Medium Lot Residential (2-4 DU/Acre)	1,206,612	27.7	0.0433	0.045
ЭВ	4,357,936	100.0	0.1563	DU 65	6 10 to 6 22	E4 G	Medium Lot Residential (2-4 DU/Acre)	2,234,628	51.3	0.0802	0.045
					0-1910 0-23	54.0	Active Open Space	143,748	3.3	0.0052	0.050
					6-1/2	31.0	Medium Lot Residential (2-4 DU/Acre)	1,350,360	31.0	0.0484	0.045
6A	3,355,141	77.0	0.1203	DU 6S	6-7	19.6	Medium Lot Residential (2-4 DU/Acre)	853,776	19.6	0.0306	0.045
					6-8	26.4	Large Lot Residential (1-2 DU/Acre)	1,149,984	26.4	0.0413	0.045
					6-10 to 6-12	6F 1	Medium Lot Residential (2-4 DU/Acre)	1,825,164	41.9	0.0655	0.045
6B	2,865,742	65.8	0.1028	DU 6S	6-13 to 6-15	05.1	Small Lot Residential (4-6 DU/Acre)	1,010,592	23.2	0.0363	0.040
						0.7	General Transportation	30,492	0.7	0.0011	0.035
					DU-2A	15.6	Medium Lot Residential (2-4 DU/Acre)	679,536	15.6	0.0244	0.045
						38.5	Medium Lot Residential (2-4 DU/Acre)	1,677,060	38.5	0.0602	0.045
7A	3,652,969	83.9	0.1311	DU 2	D0-20	24.0	Medium Density Residential (5-10 DU/Acre)	1,045,440	24.0	0.0375	0.035
					DU-2D	2.9	Active Open Space	126,324	2.9	0.0045	0.050
						2.9	General Transportation	126,324	2.9	0.0045	0.035

Description: Land use data based on proposed development

Location Eastmark - East Mesa, Arizona

Sub-Basin ID	Basin Area	Basin Area	Basin Area	DU	Parcel(s) within DU	DU Area	Land Use	Land Use Area	Land Use Area	Land Use Area	Kn
	(69.10)	(46166)	(09.111)		3/4.8	10.5	Small Lat Residential (1.6 DLI/Acre)	(6q. n.) 457 380	10.5	0.0164	0.040
					3/4-0	10.5	Small Lot Residential (4-6 DU/Acre)	457,500	10.5	0.0167	0.040
					3/4-10	12.2	Medium Lot Residential (2-4 DLI/Acre)	531 432	12.2	0.0101	0.045
					3/4-11	11.8	Medium Lot Residential (2-4 DU/Acre)	514 008	11.8	0.0184	0.045
7B	4 214 789	96.8	0 1513	DU 3/4	3/4-12	13.0	Medium Lot Residential (2-4 DU/Acre)	566 280	13.0	0.0203	0.045
. 2	.,,	0010	011010	200,1	3/4-13	12.0	Medium Lot Residential (2-4 DU/Acre)	522 720	12.0	0.0188	0.045
					3/4-19 to 3/4-22	13.2	Active Open Space	574,992	13.2	0.0206	0.050
						13.4	General Transportation	583,704	13.4	0.0209	0.035
					3/4-13	1.4	Medium Lot Residential (2-4 DU/Acre)	60,984	1.4	0.0022	0.045
					3/4-14 to 3/4-17	46.9	Small Lot Residential (4-6 DU/Acre)	2,042,964	46.9	0.0733	0.040
7C	3,158,912	72.5	0.1133	DU 3/4	3/4-18	10.2	High Density Residential (10-15 Du/Acre)	444,312	10.2	0.0159	0.030
					3/4-19 to 3/4-22	12.9	Active Open Space	561,924	12.9	0.0202	0.050
						1.1	General Transportation	47,916	1.1	0.0017	0.035
				DU6S	Parcel 6-3	16.9	General Commercial	736,164	16.9	0.0264	0.035
					Parcels 7.1		Medium Lot Residential (2-4 DU/Acre)	9,147,600	210.0	0.3281	0.045
0	17 705 605	406.0	0.6259		through 7	383.6	Small Lot Residential (4-6 DU/Acre)	7,130,772	163.7	0.2558	0.040
0	17,725,025	400.9	0.0356	007	27	303.0	Institutional	304,920	7.0	0.0109	0.040
					21		Active Open Space	126,324	2.9	0.0045	0.050
						6.4	General Transportation	278,784	6.4	0.0100	0.035
					7-50	5.0	Educational	217,800	5.0	0.0078	0.055
q	2 609 899	59.9	0.0936		7-51	6	Educational	871,200	6.0	0.0094	0.055
5	2,000,000	00.0	0.0000	201	7-52 & 7-54	34.8	Active Open Space	1,515,888	34.8	0.0544	0.050
					7-53	14.1	High Density Residential (10-15 Du/Acre)	614,196	14.1	0.0220	0.030
					7-1	15.9	Small Lot Residential (4-6 DU/Acre)	692,604	15.9	0.0248	0.040
					7-2	19.3	Medium Lot Residential (2-4 DU/Acre)	840,708	19.3	0.0302	0.045
					7-3	14.5	Medium Lot Residential (2-4 DU/Acre)	631,620	14.5	0.0227	0.045
10	4 768 643	109.5	0 1711		7-4	5.4	Medium Lot Residential (2-4 DU/Acre)	235,224	5.4	0.0084	0.045
10	1,1 00,0 10	100.0	0.1711	201	7-19	1.7	Small Lot Residential (4-6 DU/Acre)	74,052	1.7	0.0027	0.040
					7-20	6.7	Small Lot Residential (4-6 DU/Acre)	291,852	6.7	0.0105	0.040
					7-21	20.0	Small Lot Residential (4-6 DU/Acre)	871,200	20.0	0.0313	0.040
						26.0	General Transportation	119,210	26.0	0.0406	0.035
				DU3/4	3/4-1 to 3/4-3	4.0	General Transportation	174,240	4.0	0.0063	0.035
				200,1	3/4-6	11.5	Educational	500,940	11.5	0.0180	0.055
11A	2,172,787	49.9	0.0780		7-25	1.7	Institutional	74,052	1.7	0.0027	0.040
				DU7	7-26	5.5	General Commercial	239,580	5.5	0.0086	0.035
				20.	7-52,54	11.9	Active Open Space	518,364	11.9	0.0186	0.050
						15.3	General Transportation	861,054	15.5	0.0242	0.035

Description: Land use data based on proposed development

Location Eastmark - East Mesa, Arizona

Sub-Basin ID	Basin Area	Basin Area	Basin Area	ווס	Parcel(s)	DU Area	l and lise	Land Use Area	Land Use Area	Land Use Area	Kn
Cub Basin ib	(sq. ft.)	(acres)	(sq. mi)	В	within DU	(ac)	Land	(sq. ft.)	(acres)	(sq. mi.)	
					3/4-4	34.0	Small Lot Residential (4-6 DU/Acre)	1,481,040	34.0	0.0531	0.040
					3/4-6	49.6	Educational	2,147,508	49.3	0.0770	0.055
110	6 101 226	140.1	0.2190	0112/4	3/4-7	5.5	General Commercial	239,580	5.5	0.0086	0.035
ПВ	0,101,220	140.1	0.2109	D03/4	3/4-1 to 3/4-3	40.0	Medium Density Residential (5-10 DU/Acre)	1,742,400	40.0	0.0625	0.035
						11.0	High Density Residential (10-15 Du/Acre)	479,160	11.0	0.0172	0.030
						14.7	Medium Density Residential (5-10 DU/Acre)	640,332	14.7	0.0230	0.035
					D0-2B	6.3	Very High Density Residential (>15 DU/Acre)	274,428	6.3	0.0098	0.025
				DU2		9.1	Medium Density Residential (5-10 DU/Acre)	396,396	9.1	0.0142	0.035
124	3 264 256	74 9	0 1170		DU-2E	12.8	Small Lot Residential (4-6 DU/Acre)	557,568	12.8	0.0200	0.040
1273	0,204,200	74.0	0.1170			9.0	Medium Lot Residential (2-4 DU/Acre)	392,040	9.0	0.0141	0.045
				DU3/4	3/4-34	14.7	Very High Density Residential (>15 DU/Acre)	640,332	14.7	0.0230	0.025
				000/4	0/+-0+	5.1	General Commercial	222,156	5.1	0.0080	0.035
						3.2	General Transportation	139,392	3.2	0.0050	0.035
					3/4-28	16.0	Medium Density Residential (5-10 DU/Acre)	696,960	16.0	0.0250	0.035
12B	2,423,721	55.6	0.0869	DU3/4	3/4-29	22.4	Medium Density Residential (5-10 DU/Acre)	975,744	22.4	0.0350	0.035
					3/4-30	17.2	Medium Density Residential (5-10 DU/Acre)	749,232	17.2	0.0269	0.035
					3/4-10B	18.7	General Commercial	814,572	18.7	0.0292	0.035
120	2 098 178	48.2	0.0753	DU3/4	3/4-31	8.4	Small Lot Residential (4-6 DU/Acre)	365,904	8.4	0.0131	0.040
120	2,000,110	10.2	0.0700	200,1	3/4-32	14.2	Small Lot Residential (4-6 DU/Acre)	618,552	14.2	0.0222	0.040
					3/4-33	6.9	Small Lot Residential (4-6 DU/Acre)	300,564	6.9	0.0108	0.040
					3/4-23	8.5	Medium Lot Residential (2-4 DU/Acre)	370,260	8.5	0.0133	0.045
					3/4-24	10.9	Medium Lot Residential (2-4 DU/Acre)	474,804	10.9	0.0170	0.045
					3/4-25	11.6	Medium Lot Residential (2-4 DU/Acre)	505,296	11.6	0.0181	0.045
13	3 372 581	77 4	0 1209	DU3/4	3/4-26	13.4	Medium Lot Residential (2-4 DU/Acre)	583,704	13.4	0.0209	0.045
10	0,012,001		0.1200	200,1	3/4-27	17.9	Medium Lot Residential (2-4 DU/Acre)	779,724	17.9	0.0280	0.045
					3/4-31	1.7	Small Lot Residential (4-6 DU/Acre)	74,052	1.7	0.0027	0.040
					3/4-32	8.5	Small Lot Residential (4-6 DU/Acre)	370,260	8.5	0.0133	0.040
						4.9	General Transportation	213,444	4.9	0.0077	0.025

Description: Land use data based on proposed development

Location Eastmark - East Mesa, Arizona

Sub-Basin ID	Basin Area (sq. ft.)	Basin Area (acres)	Basin Area (sq. mi)	DU	Parcel(s) within DU	DU Area (ac)	Land Use	Land Use Area (sq. ft.)	Land Use Area (acres)	Land Use Area (sq. mi.)	Kn
14	3,248,624	74.6	0.1166	DU3/4	3/4-8B	8.5	Very High Density Residential (>15 DU/Acre)	370,260	8.5	0.0133	0.025
					3/4-9A	7.2	General Commercial	313,632	7.2	0.0113	0.035
					3/4-9B	7.4	General Commercial	322,344	7.4	0.0116	0.035
					3/4-9C	2.2	General Commercial	95,832	2.2	0.0034	0.035
					3/4-9D	4.4	General Commercial	191,664	4.4	0.0069	0.035
					3/4-9E	2.1	General Commercial	91,476	2.1	0.0033	0.035
					3/4-9F	6.0	General Commercial	261,360	6.0	0.0094	0.035
					3/4-9G	2.0	General Commercial	87,120	2.0	0.0031	0.035
					3/4-9H	4.7	Very High Density Residential (>15 DU/Acre)	204,732	4.7	0.0073	0.025
					3/4-9J	10.4	Very High Density Residential (>15 DU/Acre)	453,024	10.4	0.0163	0.025
					3/4-9K	3.1	Very High Density Residential (>15 DU/Acre)	135,036	3.1	0.0048	0.025
					3/4-9L	5.9	Very High Density Residential (>15 DU/Acre)	257,004	5.9	0.0092	0.025
						10.7	General Transportation	466,092	10.7	0.0167	0.025
73A	26,400,845	606.1	0.9470				Passive Open Space	26,400,845	606.1	0.9470	0.093
73B	11,854,970	272.2	0.4253				Small Lot Residential (4-10 DU/Acre)	11,854,970	272.2	0.4253	0.040
73C	16,310,497	374.4	0.5850				Small Lot Residential (4-10 DU/Acre)	16,310,497	374.4	0.5850	0.040
74A	21,020,314	482.6	0.7541				Passive Open Space	21,020,314	482.6	0.7541	0.095
74B	9,278,312	213.0	0.3328				Small Lot Residential (4-10 DU/Acre)	9,278,312	213.0	0.3328	0.040
74C	9,606,165	220.5	0.3445				Small Lot Residential (4-10 DU/Acre)	9,606,165	220.5	0.3445	0.040
16	3,372,581	77.4	0.1209	DU9	9-1		Medium Lot Residential (2-4 DU/Acre)	2,491,632	57.2	0.0894	0.045
						63.1	Active Open Space	135,036	3.1	0.0048	0.050
							General Transportation	121,968	2.8	0.0044	0.035
17	3,248,624	74.6	0.1166	DU3S	3S-2	31.0	Medium Lot Residential (2-4 DU/Acre)	1,350,360	31.0	0.0484	0.045
					3S-1, 3S-3	59.0	Small Lot Residential (4-6 DU/Acre)	2,570,040	59.0	0.0922	0.040
18	2,747,312	63.1	0.0986	DU8			Medium Lot Residential (2-4 DU/Acre)	6,904,260	158.5	0.2477	0.045
					8-1 through	204.8	Large Lot Residential (1-2 DU/Acre)	871,200	20.0	0.0313	0.045
					8-9	20.00	Active Open Space	927,828	21.3	0.0333	0.050
							General Transportation	217,800	5.0	0.0078	0.035
19	3,855,367	88.5	0.1383	DU9	9-2	25.6	Medium Lot Residential (2-4 DU/Acre)	1,115,136	25.6	0.0400	0.045
					9-3	11.2	Institutional	487,872	11.2	0.01/5	0.040
					9-4	40.1	Small Lat Residential (2-4 DU/Acre)	1,740,750	40.1	0.0627	0.045
					9-0	1.4	Small Lot Residential (4-6 DU/Acre)	322,344	1.4	0.0066	0.040
						4.Z	General transportation	102,952	4.Z	0.0066	0.035
Table 3 - Interim Condition HEC-1 Land Use Data

Description: Land use data based on proposed development

Location Eastmark - East Mesa, Arizona

Reference: DDMSW Version 5.3.0

Sub-Basin ID	Basin Area (sq. ft.)	Basin Area (acres)	Basin Area (sq. mi)	DU	Parcel(s) within DU	DU Area (ac)	Land Use	Land Use Area (sq. ft.)	Land Use Area (acres)	Land Use Area (sq. mi.)	Kn
							Medium Lot Residential (2-4 DU/Acre)	596,772	13.7	0.0214	0.045
				DU8	8-9	18.7	Active Open Space	108,900	2.5	0.0039	0.050
20	7 514 002	170 5	0.2605				General Transportation	108,900	2.5	0.0039	0.035
20	7,514,092	172.5	0.2095		9-4, 9-5, 9-	138.0	Medium Lot Residential (2-4 DU/Acre)	5,523,408	126.8	0.1981	0.045
				003	6, 9-7		Active Open Space	487,872	11.2	0.0175	0.050
						15.8	General Transportation	688,248	15.8	0.0247	0.035
75	12,198,123	280.0	0.438				Low Density (Proving Grounds)	12,198,123	280.0	0.4375	0.060
77A	48,480,538	1113.0	1.7391				Passive Open Space	48,480,538	1113.0	1.7391	0.092
77B	0 7/0 171	223.6	0 3404				Passive Open Space	3,985,740	91.5	0.1430	0.050
110	9,740,171	223.0	0.3494				Medium Lot Residential (2-4 DU/Acre)	5,771,700	132.5	0.2070	0.045
770	7 760 721	178 /	0.2788				Medium Lot Residential (2-4 DU/Acre)	7,596,864	174.4	0.2725	0.045
110 1,	7,709,721	170.4	0.2700	/ 00			Institutional	174,240	4.0	0.0063	0.040

Interim Condition HEC-1 Routing Data

CIVIL ENGINEERS * HYDROLOGISTS * LAND SURVEYORS

Table 4 - Interim Condition HEC-1 Routing Data

Description:	Routing parameters based on proposed channels and drainage corridors	

Location

Eastmark - East Mesa, Arizona

Reference: DDMSW Version 5.3.0

Routing ID	N-Steps	Routing Method	LOB N	CHAN N	ROB N	Length (ft)	Slope (ft/ft)	RX1	RX2	LB	RX4	RX5	RB	RX7	RX8	RY1	RY2	LB	RY4	RY5	RB	RY7	RY8
10BT75	7	Normal Depth	0.030	0.013	0.030	10500	0.0038	0.0	15.0	16.5	25.0	33.0	41.5	43.0	58.0	6.60	6.60	5.60	0.00	0.00	5.60	6.60	6.60
10T75	7	Normal Depth	0.030	0.015	0.030	6300	0.0060	0.0	17.5	18.0	57.0	73.0	112.0	112.5	130.0	1.00	0.50	0.00	0.80	0.80	0.00	0.50	1.00
2BT1	12	Normal Depth	0.032	0.032	0.032	4908	0.0045	0.0	1.0	2.0	3.0	2003.0	2004.0	2005.0	2006.0	1.00	0.75	0.50	0.00	0.00	0.50	0.75	1.00
1T3	3	Normal Depth	0.035	0.035	0.035	2548	0.0051	0.0	2.0	4.0	8.0	42.0	46.0	48.0	50.0	2.00	1.50	1.00	0.00	0.00	1.00	1.50	2.00
3T7A	4	Normal Depth	0.030	0.015	0.030	3854	0.0033	0.0	7.5	8.0	38.0	43.0	73.0	73.5	81.0	0.80	0.50	0.00	0.60	0.60	0.00	0.50	0.80
5BT7A	2	Normal Depth	0.030	0.015	0.030	2155	0.0040	0.0	17.5	18.0	57.0	73.0	112.0	112.5	130.0	1.00	0.50	0.00	0.80	0.80	0.00	0.50	1.00
7AT12	1	Normal Depth	0.030	0.015	0.030	1540	0.0080	0.0	17.5	18.0	57.0	73.0	112.0	112.5	130.0	1.00	0.50	0.00	0.80	0.80	0.00	0.50	1.00
7CT7B	1	Normal Depth	0.035	0.035	0.035	618	0.0030	0.0	1.0	20.0	24.0	198.0	202.0	222.0	235.0	6.00	5.00	1.00	0.00	0.00	1.00	5.00	6.00
7CT13	5	Normal Depth	0.030	0.015	0.030	3109	0.0050	0.0	17.5	18.0	57.0	73.0	112.0	112.5	130.0	1.00	0.50	0.00	0.80	0.80	0.00	0.50	1.00
6AT1	19	Normal Depth	0.030	0.015	0.030	3600	0.0011	0.0	17.0	23.0	28.5	46.5	65.5	71.0	84.0	1.07	0.90	0.90	0.00	1.15	0.00	0.90	1.78
6BT7C	1	Normal Depth	0.030	0.015	0.030	1001	0.0060	0.0	17.5	18.0	57.0	73.0	112.0	112.5	130.0	1.00	0.50	0.00	0.80	0.80	0.00	0.50	1.00
8T6B	2	Normal Depth	0.030	0.015	0.030	2604	0.0047	0.0	17.0	23.0	28.5	46.5	65.5	71.0	84.0	1.10	0.90	0.90	0.00	1.15	0.00	0.90	1.78
11BT13	4	Normal Depth	0.030	0.015	0.030	1262	0.0050	0.0	17.5	18.0	57.0	73.0	112.0	112.5	130.0	1.00	0.50	0.00	0.80	0.80	0.00	0.50	1.00
11AT75	5	Normal Depth	0.030	0.015	0.030	1855	0.0051	0.0	17.5	18.0	57.0	73.0	112.0	112.5	130.0	1.00	0.50	0.00	0.80	0.80	0.00	0.50	1.00
12T12C	2	Normal Depth	0.030	0.015	0.030	2600	0.0014	0.0	17.5	18.0	57.0	73.0	112.0	112.5	130.0	2.00	1.00	0.50	0.00	0.00	0.50	1.00	2.00
2BT12C	4	Normal Depth	0.030	0.015	0.030	1416	0.0014	0.0	17.5	18.0	57.0	73.0	112.0	112.5	130.0	2.00	1.00	0.50	0.00	0.00	0.50	1.00	2.00
13T75	1	Normal Depth	0.030	0.015	0.030	1230	0.0016	0.0	17.5	18.0	57.0	73.0	112.0	112.5	130.0	2.00	1.00	0.50	0.00	0.00	0.50	1.00	2.00
18T19	1	Normal Depth	0.030	0.015	0.030	1040	0.0040	0.0	7.5	8.0	38.0	43.0	73.0	73.5	81.0	0.80	0.50	0.00	0.60	0.60	0.00	0.50	0.80
77CT78	4	Normal Depth	0.032	0.032	0.032	4435	0.0020	0.0	5.0	10.0	24.0	124.0	138.0	143.0	148.0	4.50	4.00	3.50	0.00	0.00	3.50	4.00	4.50
78CT79	2	Normal Depth	0.032	0.032	0.032	4215	0.0033	0.0	5.0	10.0	26.0	81.0	97.0	102.0	107.0	5.00	4.50	4.00	0.00	0.00	4.00	4.50	5.00

Interim Condition Onsite Retention Volume Summary

Table 5 - Interim	Condition	Onsite	Retention	Volume Summa	ry

Description:	Calculation of Required Retention Volume Using the Rational Method
Location	Eastmark

Reference:	Drainage Design Manual for Maricopa County, Vol. I, Hydrology

Known Values:	Design storm:	100-yr, 2-hr	100-yr, 24-hr
	Rainfall, D:	2.19 inches	3.51 inches

Calc. Values: V = DAC Where:

V = Retention Volume Required D = Depth of Rainfall (ft) A = Area of Watershed Contributing C = Runoff Coefficient OverTime Floodway)

Retention (North of

		Sub-	basin	Develop	oment Unit							Madalad UEC 4
Retention Basin	Retention Location	Contributing Sub-basin	Contributing Sub-basin Area (acres)	Contributing DUs	DU Area Within Sub- basin (acres)	Weighted "C ₁₀₀ "	Required Storm Event Retention	Volume Required (acre-feet)	Total Volume Required (acre-feet)	Volume Provided (acre-feet)	Total Volume Provided (acre-feet)	Retention Volume (acre-feet)
DET000 ⁽¹⁾	DUEN	28	101.4	DU-6A	86.5	0.00	100 Voor 2 Hour	16.66	16.66	14.45	14 45	16.66
RE102B ⁽¹⁾	DU 6N	28	101.4		14.9	0.90	100-Year, 2-Hour	10.00	10.00		14.45	10.00
RET03	DU 5N	3A	35.7	DU-5A 	25 5.7 5	0.86	100-Year, 24-Hour	8.98	8.98	6.87 	6.87	6.87
RET04A	DU 2	4A	32.7	DU-2A, DU-	32.7	0.86	100-Year, 24-Hour	5.13	5.13			5.13
				6-4,6-5	34.8	0.77		4.89				
				6-6	18.9	0.74		2.56				
RET05A	DU 6S	5A	120.2	6-9, 6-17	24.9		100-Year, 2-Hour		15.83	14.25	14.25	14.25
				6-13 to 6-15	9.3	0.60		0.20				
				6-19 to 6-23	9.0	0.09		0.30				
					1.8							
				6-13 to 6-15	45.4	0.65		11.48		11 53		
RET05B	DU 6S	5B	100.0	6-19 to 6-23	54.6	0.00	100-Year, 2-Hour	0.00	11.86		11.53	11.53
				6 1/2		0.65		0.38				
RET06A ⁽³⁾	DU 6S	6A	77.0	6-7 6-8	77.0	0.65	100-Year, 2-Hour	9.14	9.14	10.28	10.28	10.28
DETOCD	DUICO	6D	65.0	6-10 to 6-12	41.9	0.60	100 Xaaa 2 Have	0.00	0.00	7.00	7.00	7.00
RETUOD	DU 65	OB	0.60		0.7	0.69	100-Year, 2-Hour	8.29	8.29	1.32	1.32	1.32
RET07A	DU 2	7A	83.9	DU-2A, DU- 2C, DU-2D	83.9	0.69	100-Year, 24-Hour	16.94	16.94	0.00	0.00	16.94
				3/4-8 to 3/4-	70.2							
RET07B	DU 3/4	7B	96.8	13 3/4-19 to 3/4- 22	13.2	0.71	100-Year, 24-Hour	20.09	20.09	19.43	19.43	19.43
					13.4	1						
				3/4-13	1.40							
				3/4-14 to	46.90							
RET07C	DU 3/4	7C	72.5	3/4-17 3/4-18	10.20	0.75	100-Year. 24-Hour	15.91	15.91	15.70	15.70	15.70
				3/4-19 to	12 90							
				3/4-22	1 10							
	B11.00			Parcel 6-3	16.9	0.90		2.77				
RET08 ⁽²⁾	DU 6S DU 7	8	406.9	Parcels 7-1 through 7-27	383.6	0.70	100-Year, 2-Hour	49.00	52.83	45.29	45.29	48.06
					6.4	0.90	100.1/	1.06				
				7-50	5.0	0.80	100-Year, 2-Hour	0.73				
RET09 (4)	DU 7	9	59.9	7-52 & 7-54	34.8	0.65	100-Year, 24-Hour	6.61	10.41	5.72	5.72	7.91
				7-53	14.1	0.85	100-Year, 2-Hour	2.19				
				7-1	15.9							
				7-2	19.3							
				7-3	14.5 5.4					12 82		
RET10 ⁽²⁾	DU 7	10	109.5	7-19	1.7	0.75	100-Year, 2-Hour	14.98	14.98		15.09	15.09
				7-20	6.7							
				7-21	20							
				 3/4-1 to	20		1			2.21		
				3/4-3	4.0	0.90	-	0.66		1.00		
RET11A	DU 3/4	11Δ	49.9	3/4-6	11.5	0.80	100-Year 2-Hour	1.68	7.48		8.03	8.03
	200,1		10.0	7-26	5.5	0.90	100 1001, 2 1100	0.91		1.60	0.00	0.00
				7-52,54	11.9	0.65		1.41		5.43		
					15.3	0.90		2.56		0.10		
				3/4-4	34.0	0.75	-	4.65				
				3/4-0	49.3	0.60	-	7.19				
RET11B	DU 3/4	11B	140.1	3/4-1 to	5.5	0.30	100-Year, 2-Hour	0.91	19.95	21.17	21.17	21.17
				3/4-3	40.0	0.75	4	5.48				
					11.0	0.85		1.72				
				DU-2B	21.0	0.80	1	3.07				
RET12A	DU 3/4 DU 2	12A	74.9	DU-2E	30.9	0.72	100-Year, 2-Hour	4.05	10.90	0.00	0.00	10.90
				3/4-34	19.8	0.90		3.25				
					3.2	0.90		0.53				
DETION	DUAN	400	55.0	3/4-28	16	16.00	100.14.00.11	7.04	7.04	0.00	0.00	7.04
RE1128	DU 3/4	12B	55.6	3/4-29	22.4	22.40	100-Year, 2-Hour	7.61	7.61	0.00	0.00	7.61
		1		3/4-30	11.2	17.20	1	1		1		1

Leasting

Table 5 - Interim	Condition Onsite	Retention	Volume Summar	v

Description:	Calculation of Required Retention Volume Using the Rational Method

Location	Easunark
Reference:	Drainage Design Manual for Maricopa County, Vol. I, Hydrology

Reference.	Drainage Desig	in Manual IOF	viancopa coui
Known Values:	Design storm:	100-yr, 2-hr	100-yr, 24-hi
	Rainfall, D:	2.19 inches	3.51 inches

V = DAC Calc. Values:

Where:

V = Retention Volume Required D = Depth of Rainfall (ft) A = Area of Watershed Contributing C = Runoff Coefficient

		Sub-l	basin	Develop	ment Unit							Medeled HEC 1
Retention Basin	Retention Location	Contributing Sub-basin	Contributing Sub-basin Area (acres)	Contributing DUs	DU Area Within Sub- basin (acres)	Weighted "C ₁₀₀ "	Required Storm Event Retention	Volume Required (acre-feet)	Total Volume Required (acre-feet)	Volume Provided (acre-feet)	Total Volume Provided (acre-feet)	Retention Volume (acre-feet)
				3/4-10B	18.7	18.70						
DET400	DU 2/4	100	40.0	3/4-31	8.4	8.40	100-Year, 2-Hour	7.12	7.12	4.00	4.83	7.12
REITZC	DU 3/4	120	40.2	3/4-32	14.2	14.20				4.65		
				3/4-33	6.9	6.90						
				3/4-23	8.5	8.50						
		13	77.4	3/4-24	10.9	10.90	100-Year, 2-Hour	10.17	10.17	13.96	13.96	13.96
				3/4-25	11.6	11.60						
RET13	DU 3/4			3/4-26	13.4	13.40						
				3/4-27	17.9	17.90						
				3/4-31	1.7	1.70						
				3/4-32	8.3 4 9	4 90						
				3/4-8B	8.5	8.50						
				3/4-9A	7.2	7.20						
				3/4-9B	7.4	7.40						
				3/4-9C	2.2	2.20						
		14	74.6	3/4-9D	4.4	4.40				0.93		12.25
				3/4-9E	2.1	2.10						
RET14	DU 3/4			3/4-9F	6	6.00	100-Year, 2-Hour	12.25	12.25		0.93	
				3/4-9G	2	2.00						
				3/4-9H	4.7	4.70						
				3/4-9J	10.4	10.40						
				2/4-91	5.1	5.10						
				5/4-9L	10.7	10.70						
		1			10.7	10.70						

Total

202.55 202.55 214.05 214.05 270.21 du-it		282.53	282.53	214.85	214.85	276.21	ac-ft
--	--	--------	--------	--------	--------	--------	-------

1. Retention provided volume for RET02B was taken from the First Solar Final Drainage Report, where only approximately half of 2B is developed.
2. Retention provided volumes for RET08 and RET10 were taken from DU7 and Ray Road Final Drainage Reports and improvement plans.
3. Retention provided volumes for RET06A was taken from DU6 South Final Drainage Reports and improvement plans.
4. Required Retention for RET09 was determined to be the 100-year, 24 hour volume except for the existing Basis and Sequoia Pathfinder Acadamy schools and the existing daycare. The total acreage for these three existing developments within Subbasin 9 is approximately 11 Acres. Thus, the required retention for RET09 includes 100-year, 24 hour volume for the Great Park and the New Home Company Site located at the southwest corner of Eastmark Parkway and Point Twenty-Two Boulevard.

Retention (South of the Powerline Floodway)												
Retention Basin	Retention Location	Sub- Contributing Sub-basin	basin Contributing Sub-basin Area (acres)	Develop Contributing DUs	ment Unit DU Area Within Sub- basin (acres)	Weighted "C ₁₀₀ "	Required Storm Event Retention	Volume Required (acre-feet)	Total Volume Required (acre-feet)	Volume Provided (acre-feet)	Total Volume Provided (acre-feet)	Modeled HEC-1 Retention Volume (acre-feet)
RET16	DU 9	16	77.4	DU9	63.1	0.66	100-Year, 2-Hour	7.60	7.60		-	7.60
RET17 (5)	DU 3S	17	74.6	3S-2 3S-1, 3S-3	31.0 59.0	0.72	100-Year, 2-Hour	11.80	11.80	12.74	12.74	12.74
RET18	DU 8	18	63.1	8-1 through 8-9	204.8	0.66	100-Year, 2-Hour	24.70	24.70	-	-	24.70
RET19 ⁽⁶⁾	DU 9	19	88.5	9-2 9-3 9-4 9-6 	25.6 11.2 40.1 7.4 4.2	0.70	100-Year, 2-Hour	11.30	11.30	9.92	9.92	11.30
				8-9	18.7	0.68		2.30				
RET20 ⁽⁶⁾	DU 8 DU 9	20	172.5	9-4, 9-5, 9-6, 9-7	138.0	0.65	100-Year, 2-Hour	16.40	21.30	25.76	25.76	25.76
					15.8	0.90		2.60				1
							Total	76.70	76.70	48.42	48.42	82.10 a

5. Retention provided volumes for RET17 was taken from DU3 South Final Drainage Reports and improvement plans.

6. Retention provided volumes for RET19 and RET20 were taken from DU9 Final Drainage Reports and improvement plans.

Eastmark Required Retention Total =	359.2	ac ft
Current Eastmark Provided Retention Total =	263.3	ac-ft
Current Eastmark Modeled Retention Total =	358.3	ac-ft

Post-Developed Rating Curve for CP7C

CIVIL ENGINEERS * HYDROLOGISTS * LAND SURVEYORS

Table 6 - Post-Developed Rating Curve for CP7C

Description: Location	DU 3/4 Phase 2 Basins C & D Rating Curve for CP7C Eastmark - Mesa, Arizona						
Inflow	Warner Road Outfall	Point Twenty-Two Outfall					
	(Routing 7CT7B)	(Routing 7CT13)					
(CFS)	(CFS)	(CFS)					
0	0	0					
1	0.3	0.7					
5.8	1.8	4					
9	2.8	6.2					
16.7	5	11.2					
21.5	6.6	14.9					
22.8	7	15.8					
100	30	70					

VICINITY MAP

SOILS MAP

FLOOD INSURANCE RATE MAP

NOT FOR CONSTRUCTION OR RECORDING EXHIBIT 3: DU 2 FEMA FIRM MAP EASTMARK MESA, ARIZONA

SECTION 404 JURISDICTIONAL DELINEATION MAP

5306-DU 2 EX 4-Ju ae/DU 2 MP/EX

Dec

DMC

INTERIM CONDITION HEC-1 SCHEMATIC

INTERIM DRAINAGE MAP

