

What is an Urban Heat Island?

- Urban structures tend to re-emit heat, and large areas create "heat islands".
- Structures trap heat during the day and don't cool down in the evening.

ſ

Why is this a Problem?

522

Deaths Due to Heat Related Causes in 2020

325

Days of Sun in 2021

86°

Avg. Degrees Fahrenheit in Mesa

75°-85°

Avg. Degrees Fahrenheit in Mesa at night

Plant native trees and vegetation

- Heat mitigation
- Carbon absorption
- Equity

What Trees Should we Plant?

- The Mesquite Tree
 - Native to Arizona
 - Requires little water
 - Shade coverage with a span of 10 feet
 - Arizona Native trees use the Carbon Dioxide they consume to create more foliage than non-native plants

1. Lauren Waller and Warwick Allen, "Planting Non-Native Trees Accelerates the Release of Carbon Back into the Atmosphere," The Conversation, November 16, 2021, https://theconversation.com/planting-non-native-trees-accelerates-the-release-of-carbon-back-into-the-atmosphere-139841.

Optimization

Total

Do Trees Actually Work for Heat Mitigation?

Areas without greenspace are 5F to 3C warmer than areas with trees and plants.¹

Table :	3: Pote	ential	peak load	reduct	ions,	annual	energy	savings,	and an	nual	l
monetary	savings	from	boundary	-layer	and	canopy-	layer v	egetative	cooling	in	the
Los Angeles Basin.											

Canopy-Layer

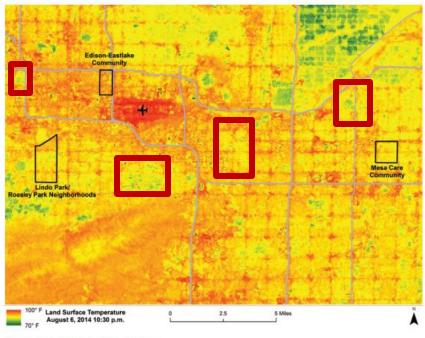
2 °C cooling, reduced

Boundary-Laver

1 °C cooling

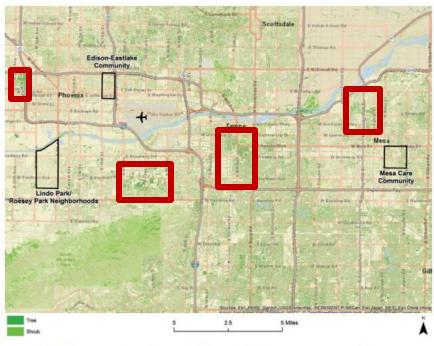
Physical effects

				Tayarea circus	1 C COOLING	wind speed, shading		
				Peak load reduction	0.6 GW	0.3 GW	0.9 GW	
Total benefits	Ft. Collins	Cheyenne	Bismarck	Annual energy savings	0.3 BkWh/year	0.2 BkWh/year	0.5 BkWh/year	
		· · · · · · · · · · · · · · · · · · ·		Monetary savings	\$30 million	\$20 million	\$50 million	
Energy	112,025	186,967	84,348	223,001	110,/ 33			
CO ₂	40,454	29,134	27,268	49,588	12,039			
Air Quality	18,477	11,907	3,715	-20,635	32,571			2
Stormwater	403,597	55,297	496,227	215,648	37,298			
Property increase	1,596,247	402,723	367,536	2,449,884	467,213			
Total benefits	2,170,799	688,029	979,094	3,247,545	665,856			
Total costs								
Planting	111,052	45,913	5,880	95,000	21,100			
Pruning	405 344	84 677	94.850	770,000	88 412			
Remove/dispo		007.626	2	227.007	216.640		2 272 000	
Im/liter/gm w 1 Otal COSTS		997,638		327,897	316,640		2,372,000	
Infrastructure Net benefits		1,173,161		358,133	662,454		875,545	
Amin/inspect/		-,-, 0,-0		0,000	00-,-,-		0/ 5/5 -5	
Total costs	99/,638	32/,89/	316,640	2,3/2,000	2/6,436			
Net benefits	1,173,161	358,133	662,454	875,545	389,421			
BCRs	2.18	2.09	3.09	1.37	2.41			

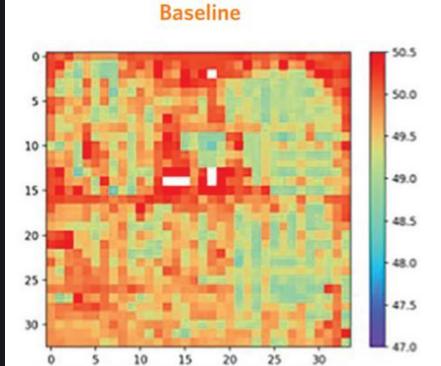

 $^{1.\} Maricopa\ County,\ Department\ of\ Public\ Health.\ Heat\ Action\ Planning\ Guide.\ Nature's\ Cooling\ Systems\ Project, 2017.$

^{2.} Kurn, D., S. Bretz, B. Huang, and H. Akbari. 1994. The Potential for Reducing Urban Air Temperatures and Energy Consumption through Vegetative Cooling (PDF) (31 pp, 1.76MB). ACEEE Summer Study on Energy Efficiency in Buildings, American Council for an Energy Efficient Economy. Pacific Grove, California.

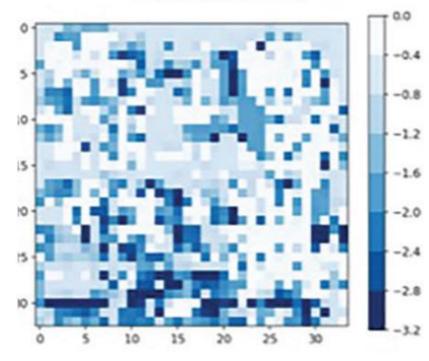
^{3.} McPherson, E.G., J. R. Simpson, P. J. Peper, S. E. Maco, and Q. Xiao. 2005. <u>Municipal forest benefits and costs in five US cities (PDF) EXITEXIT EPA WEBSITE</u> (6 pp. 267K). *Journal of Forestry* 103(8):411-416



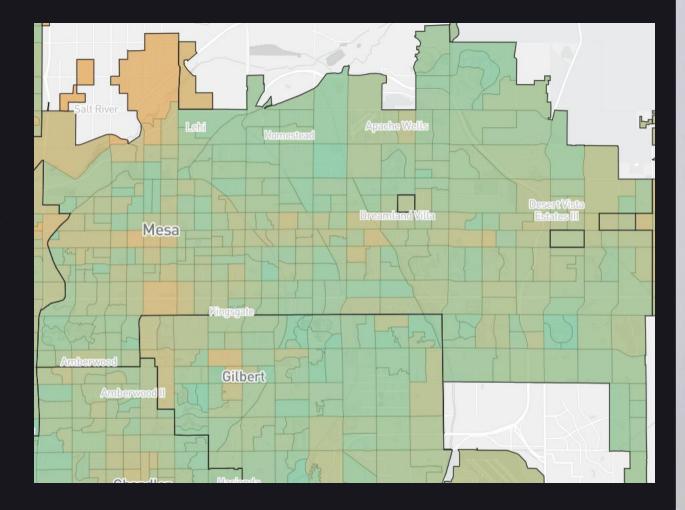
Land surface temperatures across the valley reflect factors like urban development, imperviousness, and tree canopy cover.


Source: NASA LANDSAT satellite imagery

Land cover map of central Maricopa County highlighting locations with trees (dark green) and shrubs (light green).


Source: CAP LTER land cover classification using 2010 National Agriculture Imagery Program (NAIP) Imagery

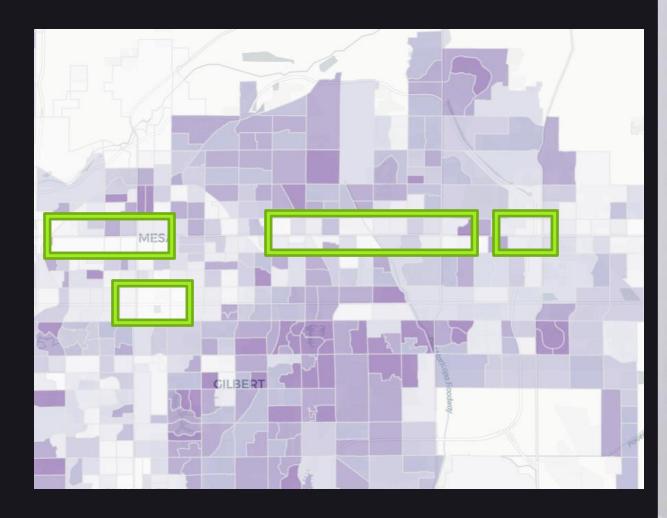
Simulated 4pm near surface air temperature (C) of the Mesa Care Neighborhood on June 20, 2017.


Cooling Scenario

Simulated 4pm near surface air temperature (C) of the Mesa Care Neighborhood with added trees on June 20, 2017.

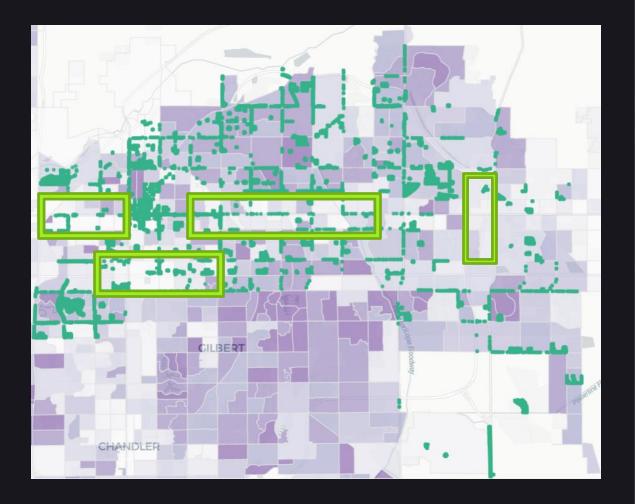
Tree Equity Score

- Scores
 - Coverage
 - Neighborhood demographics
 - Equity



Tree Equity Score

• Our

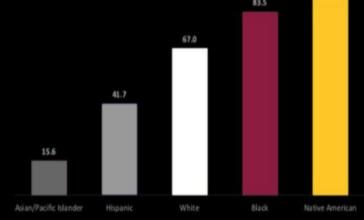

Visualization

Carto

City Trees

- All known trees
 - Departments

Where Do We Start?



Despite that 5% of housing is mobile homes, trailer residents make up 40% of indoor deaths

7 in 10 were at least 50 years old

Black and Native American Arizonans are disproportionately represented among all heat-associated deaths

37% of outdoor deaths in 2019 without shelter

